The Effects of Biodegradation on the Cytocompatibility of Bioresorbable Fe-Based Scaffolds: A Review

Article Preview

Abstract:

This work aims to review current trends in research within the field of iron-based scaffolds for orthopaedic applications. Current research is trapped in a ‘see-saw’ type problem where an increase in corrosion rate of the base metal is required to accelerate the degradation process making the resorption time compatible with the healing time. This is done via several methods including porosity control, cathodic element addition and/or patterning and alloying. In turn, this increase in corrosion rate causes the local concentration of metallic ions to increase beyond the toxicity limit for osteoblast type cells, thus negatively effecting cytocompatibility. This is most pronounced when considering the orthopaedic environment, in which static conditions provide for increased local ion concentrations, resulting in local toxicity. However, research from the medical field of Thalassemia may help solve this dilemma by providing chelation medicine for patients undergoing implantation of resorbable orthopaedic scaffolds, throughout the resorption period. Excretion of iron would then be provided mainly through bowel movement and urination.

You might also be interested in these eBooks

Info:

Pages:

22-38

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Hermawan, Updates on the research and development of absorbable metals for biomedical applications,, Progress in biomaterials, pp.1-18, (2018).

Google Scholar

[2] J. Lévesque, H. Hermawan, D. Dubé, and D. Mantovani, Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials,, Acta biomaterialia, vol. 4, pp.284-295, (2008).

DOI: 10.1016/j.actbio.2007.09.012

Google Scholar

[3] D. Tatkare, World Medical Implants Market Opportunities and Forecasts,, Allied Market Research, Portland, United States, (2016).

Google Scholar

[4] D. Adamovic, B. Ristic, and F. Zivic, Review of existing biomaterials—Method of material selection for specific applications in orthopedics,, in Biomaterials in Clinical Practice, ed: Springer, 2018, pp.47-99.

DOI: 10.1007/978-3-319-68025-5_3

Google Scholar

[5] S. Bose, M. Roy, and A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds,, Trends in biotechnology, vol. 30, pp.546-554, (2012).

DOI: 10.1016/j.tibtech.2012.07.005

Google Scholar

[6] M. Peuster, P. Beerbaum, F.-W. Bach, and H. Hauser, Are resorbable implants about to become a reality?,, Cardiology in the Young, vol. 16, pp.107-116, (2006).

DOI: 10.1017/s1047951106000011

Google Scholar

[7] J. R. Parsons, Resorbable materials and composites: New concepts in orthopedic biomaterials,, Orthopedics, vol. 8, pp.907-915, (1985).

DOI: 10.3928/0147-7447-19850701-17

Google Scholar

[8] G. Guillemin, J.-L. Patat, and A. Patel, Biodegradable implant useable as a bone prosthesis,, ed: Google Patents, (1982).

Google Scholar

[9] K. de Groot, Bioceramics consisting of calcium phosphate salts,, Biomaterials, vol. 1, pp.47-50, (1980).

DOI: 10.1016/0142-9612(80)90059-9

Google Scholar

[10] A. Sáenz, E. Rivera, W. Brostow, and V. M. Castaño, Ceramic biomaterials: an introductory overview,, Journal of Materials Education, vol. 21, pp.267-276, (1999).

Google Scholar

[11] E. Schmitt and R. Polistina, Patent 3,463,158, 1969.(b) Frazza, EJ; Schmitt,, in J. Biomed. Mater. Res. Symp, 1971, p.13.

Google Scholar

[12] A. R. Santos Jr, Bioresorbable polymers for tissue engineering,, in Tissue engineering, ed: IntechOpen, (2010).

Google Scholar

[13] J. C. Middleton and A. J. Tipton, Synthetic biodegradable polymers as orthopedic devices,, Biomaterials, vol. 21, pp.2335-2346, (2000).

DOI: 10.1016/s0142-9612(00)00101-0

Google Scholar

[14] G. Govindasamy, S. Vijayakumar, P. Kavya, M. Ranganayaki, and M. Sangavi, Fabrication of biodegrdable bone plates using polymer and nanocomposite matrix.,.

Google Scholar

[15] E. D. McBride, Absorbable metal in bone surgery: a further report on the use of magnesium alloys,, Journal of the American Medical Association, vol. 111, pp.2464-2467, (1938).

DOI: 10.1001/jama.1938.02790530018007

Google Scholar

[16] M. Seelig, A study of magnesium wire as an absorbable suture and ligature material,, Archives of Surgery, vol. 8, pp.669-680, (1924).

DOI: 10.1001/archsurg.1924.01120050210011

Google Scholar

[17] M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review,, Biomaterials, vol. 27, pp.1728-1734, (2006).

DOI: 10.1016/j.biomaterials.2005.10.003

Google Scholar

[18] M. Peuster, P. Wohlsein, M. Brügmann, M. Ehlerding, K. Seidler, C. Fink, et al., A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal—results 6–18 months after implantation into New Zealand white rabbits,, Heart, vol. 86, pp.563-569, (2001).

DOI: 10.1136/heart.86.5.563

Google Scholar

[19] M. Peuster, C. Fink, C. Von Schnakenburg, and G. Hausdorf, Dissolution of tungsten coils does not produce systemic toxicity, but leads to elevated levels of tungsten in the serum and recanalization of the previously occluded vessel,, Cardiology in the Young, vol. 12, pp.229-235, (2002).

DOI: 10.1017/s1047951102000513

Google Scholar

[20] B. Heublein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, and A. Haverich, Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology?,, Heart, vol. 89, pp.651-656, (2003).

DOI: 10.1136/heart.89.6.651

Google Scholar

[21] H. Hermawan, D. Dubé, and D. Mantovani, Development of degradable Fe-35Mn alloy for biomedical application,, in Advanced Materials Research, 2007, pp.107-112.

DOI: 10.4028/www.scientific.net/amr.15-17.107

Google Scholar

[22] B. Liu and Y. Zheng, Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron,, Acta biomaterialia, vol. 7, pp.1407-1420, (2011).

DOI: 10.1016/j.actbio.2010.11.001

Google Scholar

[23] J. Farack, C. Wolf-Brandstetter, S. Glorius, B. Nies, G. Standke, P. Quadbeck, et al., The effect of perfusion culture on proliferation and differentiation of human mesenchymal stem cells on biocorrodible bone replacement material,, Materials Science and Engineering: B, vol. 176, pp.1767-1772, (2011).

DOI: 10.1016/j.mseb.2011.06.004

Google Scholar

[24] P. Sharma and P. M. Pandey, Corrosion behaviour of the porous iron scaffold in simulated body fluid for biodegradable implant application,, Materials Science and Engineering: C, vol. 99, pp.838-852, (2019).

DOI: 10.1016/j.msec.2019.01.114

Google Scholar

[25] B. Wegener, B. Sievers, S. Utzschneider, P. Müller, V. Jansson, S. Rößler, et al., Microstructure, cytotoxicity and corrosion of powder-metallurgical iron alloys for biodegradable bone replacement materials,, Materials Science and Engineering: B, vol. 176, pp.1789-1796, (2011).

DOI: 10.1016/j.mseb.2011.04.017

Google Scholar

[26] P. P. Mueller, S. Arnold, M. Badar, D. Bormann, F. W. Bach, A. Drynda, et al., Histological and molecular evaluation of iron as degradable medical implant material in a murine animal model,, Journal of Biomedical Materials Research Part A, vol. 100, pp.2881-2889, (2012).

DOI: 10.1002/jbm.a.34223

Google Scholar

[27] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. Wirth, et al., In vivo corrosion of four magnesium alloys and the associated bone response,, Biomaterials, vol. 26, pp.3557-3563, (2005).

DOI: 10.1016/j.biomaterials.2004.09.049

Google Scholar

[28] M. Yazdimamaghani, M. Razavi, D. Vashaee, K. Moharamzadeh, A. R. Boccaccini, and L. Tayebi, Porous magnesium-based scaffolds for tissue engineering,, Materials Science and Engineering: C, vol. 71, pp.1253-1266, (2017).

DOI: 10.1016/j.msec.2016.11.027

Google Scholar

[29] R. Oriňáková, A. Oriňák, L. M. Bučková, M. Giretová, L. Medvecký, E. Labbanczová, et al., Iron based degradable foam structures for potential orthopedic applications,, Int. J. Electrochem. Sci, vol. 8, pp.12451-12465, (2013).

Google Scholar

[30] C. S. Obayi, R. Tolouei, C. Paternoster, S. Turgeon, B. A. Okorie, D. O. Obikwelu, et al., Influence of cross-rolling on the micro-texture and biodegradation of pure iron as biodegradable material for medical implants,, Acta biomaterialia, vol. 17, pp.68-77, (2015).

DOI: 10.1016/j.actbio.2015.01.024

Google Scholar

[31] H. Hermawan, D. Dubé, and D. Mantovani, Degradable metallic biomaterials: design and development of Fe–Mn alloys for stents,, Journal of Biomedical Materials Research Part A, vol. 93, pp.1-11, (2010).

DOI: 10.1002/jbm.a.32224

Google Scholar

[32] A. H. Yusop and H. Hermawan, Synthesis and development of polymers-infiltrated porous iron for temporary medical implants: A preliminary result,, in Advanced Materials Research, 2013, pp.331-335.

DOI: 10.4028/www.scientific.net/amr.686.331

Google Scholar

[33] D. L. Millis, Responses of musculoskeletal tissues to disuse and remobilization,, in Canine Rehabilitation and Physical Therapy (Second Edition), ed: Elsevier, 2014, pp.92-153.

DOI: 10.1016/b978-1-4377-0309-2.00007-7

Google Scholar

[34] M. Schinhammer, A. C. Hänzi, J. F. Löffler, and P. J. Uggowitzer, Design strategy for biodegradable Fe-based alloys for medical applications,, Acta biomaterialia, vol. 6, pp.1705-1713, (2010).

DOI: 10.1016/j.actbio.2009.07.039

Google Scholar

[35] D. A. Algren, Review of oral iron chelators (deferiprone and deferasirox) for the treatment of iron overload in pediatric patients,, World Health Organization [on line], pp.1-22, (2010).

Google Scholar

[36] H. Hermawan, A. Purnama, D. Dube, J. Couet, and D. Mantovani, Fe–Mn alloys for metallic biodegradable stents: degradation and cell viability studies,, Acta biomaterialia, vol. 6, pp.1852-1860, (2010).

DOI: 10.1016/j.actbio.2009.11.025

Google Scholar

[37] O. E. Barcia and O. R. Mattos, The role of chloride and sulphate anions in the iron dissolution mechanism studied by impedance measurements,, Electrochimica Acta, vol. 35, pp.1003-1009, (1990).

DOI: 10.1016/0013-4686(90)90035-x

Google Scholar

[38] N. M. Daud, N. B. Sing, A. H. Yusop, F. A. A. Majid, and H. Hermawan, Degradation and in vitro cell–material interaction studies on hydroxyapatite-coated biodegradable porous iron for hard tissue scaffolds,, Journal of Orthopaedic Translation, vol. 2, pp.177-184, (2014).

DOI: 10.1016/j.jot.2014.07.001

Google Scholar

[39] H. Pickering and R. Frankenthal, On the mechanism of localized corrosion of iron and stainless steel I. Electrochemical studies,, journal of the Electrochemical Society, vol. 119, pp.1297-1304, (1972).

DOI: 10.1149/1.2403983

Google Scholar

[40] P. Quadbeck, R. Hauser, K. Kümmel, G. Standke, G. Stephani, B. Nies, et al., Iron based cellular metals for degradable synthetic bone replacement,, in PM2010 World Congress, Florenz, Italy, (2010).

Google Scholar

[41] P. Sotoudehbagha, S. Sheibani, M. Khakbiz, S. Ebrahimi-Barough, and H. Hermawan, Novel antibacterial biodegradable Fe-Mn-Ag alloys produced by mechanical alloying,, Materials Science and Engineering: C, vol. 88, pp.88-94, (2018).

DOI: 10.1016/j.msec.2018.03.005

Google Scholar

[42] P. S. Bagha, M. Khakbiz, S. Sheibani, and H. Hermawan, Design and characterization of nano and bimodal structured biodegradable Fe-Mn-Ag alloy with accelerated corrosion rate,, Journal of Alloys and Compounds, vol. 767, pp.955-965, (2018).

DOI: 10.1016/j.jallcom.2018.07.206

Google Scholar

[43] T. Huang and Y. Zheng, Uniform and accelerated degradation of pure iron patterned by Pt disc arrays,, Scientific reports, vol. 6, p.23627, (2016).

DOI: 10.1038/srep23627

Google Scholar

[44] K. Ralston, N. Birbilis, and C. Davies, Revealing the relationship between grain size and corrosion rate of metals,, Scripta Materialia, vol. 63, pp.1201-1204, (2010).

DOI: 10.1016/j.scriptamat.2010.08.035

Google Scholar

[45] A. Böcker, H. Klein, and H. Bunge, Development of cross-rolling textures in Armco-Iron,, Texture, Stress, and Microstructure, vol. 12, pp.103-123, (1990).

DOI: 10.1155/tsm.12.103

Google Scholar

[46] Y. Feng, N. Gaztelumendi, J. Fornell, H. Zhang, P. Solsona, M. Baró, et al., Mechanical properties, corrosion performance and cell viability studies on newly developed porous Fe-Mn-Si-Pd alloys,, Journal of Alloys and Compounds, vol. 724, pp.1046-1056, (2017).

DOI: 10.1016/j.jallcom.2017.07.112

Google Scholar

[47] A. Vahidgolpayegani, C. Wen, P. Hodgson, and Y. Li, Production methods and characterization of porous Mg and Mg alloys for biomedical applications,, in Metallic Foam Bone, ed: Elsevier, 2017, pp.25-82.

DOI: 10.1016/b978-0-08-101289-5.00002-0

Google Scholar

[48] Q. L. Loh and C. Choong, Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size,, Tissue Engineering Part B: Reviews, vol. 19, pp.485-502, (2013).

DOI: 10.1089/ten.teb.2012.0437

Google Scholar

[49] T. L. Nguyen, M. P. Staiger, G. J. Dias, and T. B. Woodfield, A novel manufacturing route for fabrication of topologically‐ordered porous magnesium scaffolds,, Advanced Engineering Materials, vol. 13, pp.872-881, (2011).

DOI: 10.1002/adem.201100029

Google Scholar

[50] C. Yang, Z. Huan, X. Wang, C. Wu, and J. Chang, 3D printed Fe scaffolds with HA nanocoating for bone regeneration,, ACS Biomaterials Science & Engineering, vol. 4, pp.608-616, (2018).

DOI: 10.1021/acsbiomaterials.7b00885

Google Scholar

[51] Y. Li, H. Jahr, K. Lietaert, P. Pavanram, A. Yilmaz, L. Fockaert, et al., Additively manufactured biodegradable porous iron,, Acta biomaterialia, vol. 77, pp.380-393, (2018).

DOI: 10.1016/j.actbio.2018.07.011

Google Scholar

[52] M. Caligari Conti, G. Xerri, F. Peyrouzet, P. S. Wismayer, E. Sinagra, D. Mantovani, et al., Optimisation of fluorapatite coating synthesis applied to a biodegradable substrate,, Surface Engineering, vol. 35, pp.255-265, (2019).

DOI: 10.1080/02670844.2018.1491510

Google Scholar

[53] E. Tenekecioglu, V. Farooq, C. V. Bourantas, R. C. Silva, Y. Onuma, M. Yılmaz, et al., Bioresorbable scaffolds: a new paradigm in percutaneous coronary intervention,, BMC cardiovascular disorders, vol. 16, p.38, (2016).

DOI: 10.1186/s12872-016-0207-5

Google Scholar

[54] J. S. McLaren, L. White, H. Cox, W. Ashraf, C. Rahman, G. Blunn, et al., A biodegradable antibiotic-impregnated scaffold to prevent osteomyelitis in a contaminated in vivo bone defect model,, European Cells and Materials, vol. 27, pp.332-349, (2014).

DOI: 10.22203/ecm.v027a24

Google Scholar

[55] W.-J. Lin, D.-Y. Zhang, G. Zhang, H.-T. Sun, H.-P. Qi, L.-P. Chen, et al., Design and characterization of a novel biocorrodible iron-based drug-eluting coronary scaffold,, Materials & Design, vol. 91, pp.72-79, (2016).

DOI: 10.1016/j.matdes.2015.11.045

Google Scholar

[56] Y. Qi, H. Qi, Y. He, W. Lin, P. Li, L. Qin, et al., Strategy of metal–polymer composite stent to accelerate biodegradation of iron-based biomaterials,, ACS applied materials & interfaces, vol. 10, pp.182-192, (2017).

DOI: 10.1021/acsami.7b15206

Google Scholar

[57] J. Wu, X. Lu, L. Tan, B. Zhang, and K. Yang, Effect of hydrion evolution by polylactic‐co‐glycolic acid coating on degradation rate of pure iron,, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 101, pp.1222-1232, (2013).

DOI: 10.1002/jbm.b.32934

Google Scholar

[58] H. Chen, E. Zhang, and K. Yang, Microstructure, corrosion properties and bio-compatibility of calcium zinc phosphate coating on pure iron for biomedical application,, Materials Science and Engineering: C, vol. 34, pp.201-206, (2014).

DOI: 10.1016/j.msec.2013.09.010

Google Scholar

[59] M. Hrubovčáková, M. Kupkova, M. Džupon, M. Giretova, Ľ. Medvecký, and R. Džunda, Biodegradable polylactic acid and polylactic acid/hydroxyapatite coated iron foams for bone replacement materials,, Int. J. Electrochem. Sci, vol. 12, pp.11122-11136, (2017).

DOI: 10.20964/2017.12.53

Google Scholar

[60] J. He, F.-L. He, D.-W. Li, Y.-L. Liu, Y.-Y. Liu, Y.-J. Ye, et al., Advances in Fe-based biodegradable metallic materials,, RSC Advances, vol. 6, pp.112819-112838, (2016).

DOI: 10.1039/c6ra20594a

Google Scholar

[61] L. Aissani, M. Fellah, L. Radjehi, C. Nouveau, A. Montagne, and A. Alhussein, Effect of annealing treatment on the microstructure, mechanical and tribological properties of chromium carbonitride coatings,, Surface and Coatings Technology, vol. 359, pp.403-413, 2019/02/15/ 2019. https://doi.org/10.1016/j.surfcoat.2018.12.099.

DOI: 10.1016/j.surfcoat.2018.12.099

Google Scholar

[62] M. Fellah, L. Aissani, M. A. Samad, S. Mechacheti, M. Z. Touhami, A. Montagne, et al., Characterisation of RF magnetron sputtered Cr-N, Cr-Zr-N and Zr-N coatings,, Transactions of the IMF, vol. 95, pp.261-268, (2017).

DOI: 10.1080/00794236.2017.1339464

Google Scholar

[63] J. Weber, L. Atanasoska, and T. Eidenschink, Corrosion resistant coatings for biodegradable metallic implants,, ed: Google Patents, (2007).

Google Scholar

[64] I. S. Organisation, ISO 5832-1:2016: Implants for surgery -- Metallic materials -- Part 1: Wrought stainless steel,, ed, (2016).

Google Scholar

[65] D. Paramitha, M. F. Ulum, D. Noviana, S. Estuningsih, and H. Hermawan, Assessment on the inflammatory reaction during the implantation of biodegradable metal implants in mice,, Frontiers in Bioengineering and Biotechnology. 10.3389/conf.FBIOE.2016.01.00782.

DOI: 10.1063/1.4930726

Google Scholar

[66] T. Kraus, F. Moszner, S. Fischerauer, M. Fiedler, E. Martinelli, J. Eichler, et al., Biodegradable Fe-based alloys for use in osteosynthesis: Outcome of an in vivo study after 52 weeks,, Acta biomaterialia, vol. 10, pp.3346-3353, (2014).

DOI: 10.1016/j.actbio.2014.04.007

Google Scholar

[67] M. Traverson, M. Heiden, L. A. Stanciu, E. A. Nauman, Y. Jones-Hall, and G. J. Breur, In vivo Evaluation of Biodegradability and Biocompatibility of Fe30Mn Alloy,, Veterinary and Comparative Orthopaedics and Traumatology, vol. 31, pp.010-016, (2018).

DOI: 10.3415/vcot-17-06-0080

Google Scholar

[68] F. Nie, Y. Zheng, S. Wei, C. Hu, and G. Yang, In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron,, Biomedical Materials, vol. 5, p.065015, (2010).

DOI: 10.1088/1748-6041/5/6/065015

Google Scholar

[69] S. Zhu, N. Huang, L. Xu, Y. Zhang, H. Liu, H. Sun, et al., Biocompatibility of pure iron: in vitro assessment of degradation kinetics and cytotoxicity on endothelial cells,, Materials Science and Engineering: C, vol. 29, pp.1589-1592, (2009).

DOI: 10.1016/j.msec.2008.12.019

Google Scholar

[70] J. He, F.-L. He, D.-W. Li, Y.-L. Liu, and D.-C. Yin, A novel porous Fe/Fe-W alloy scaffold with a double-layer structured skeleton: preparation, in vitro degradability and biocompatibility,, Colloids and Surfaces B: Biointerfaces, vol. 142, pp.325-333, (2016).

DOI: 10.1016/j.colsurfb.2016.03.002

Google Scholar

[71] J. Cheng, T. Huang, and Y. Zheng, Microstructure, mechanical property, biodegradation behavior, and biocompatibility of biodegradable Fe–Fe2O3 composites,, Journal of Biomedical Materials Research Part A, vol. 102, pp.2277-2287, (2014).

DOI: 10.1002/jbm.a.34882

Google Scholar

[72] W. Lin, G. Zhang, P. Cao, D. Zhang, Y. Zheng, R. Wu, et al., Cytotoxicity and its test methodology for a bioabsorbable nitrided iron stent,, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 103, pp.764-776, (2015).

DOI: 10.1002/jbm.b.33246

Google Scholar

[73] Y. Yang, Surface Modification of Biodegradable Metallic Materials with Focus on Magnesium and Iron,, (2017).

Google Scholar

[74] E. M. Sussman, B. J. Casey, D. Dutta, and B. J. Dair, Different cytotoxicity responses to antimicrobial nanosilver coatings when comparing extract‐based and direct‐contact assays,, Journal of Applied Toxicology, vol. 35, pp.631-639, (2015).

DOI: 10.1002/jat.3104

Google Scholar

[75] M. W. Hentze, M. U. Muckenthaler, B. Galy, and C. Camaschella, Two to tango: regulation of Mammalian iron metabolism,, Cell, vol. 142, pp.24-38, (2010).

DOI: 10.1016/j.cell.2010.06.028

Google Scholar

[76] M. Schinhammer, I. Gerber, A. C. Hänzi, and P. J. Uggowitzer, On the cytocompatibility of biodegradable Fe-based alloys,, Materials Science and Engineering: C, vol. 33, pp.782-789, (2013).

DOI: 10.1016/j.msec.2012.11.002

Google Scholar

[77] A. K. Mishra and A. Tiwari, Iron overload in beta thalassaemia major and intermedia patients,, Maedica, vol. 8, p.328, (2013).

Google Scholar

[78] G. Faa and G. Crisponi, Iron chelating agents in clinical practice,, Coordination Chemistry Reviews, vol. 184, pp.291-310, (1999).

DOI: 10.1016/s0010-8545(99)00056-9

Google Scholar

[79] M. D. Cappellini, A. Cohen, A. Piga, M. Bejaoui, S. Perrotta, L. Agaoglu, et al., A phase 3 study of deferasirox (ICL670), a once-daily oral iron chelator, in patients with β-thalassemia,, Blood, vol. 107, pp.3455-3462, (2006).

DOI: 10.1182/blood-2005-08-3430

Google Scholar

[80] M. D. Cappellini and P. Pattoneri, Oral iron chelators,, Annual review of medicine, vol. 60, pp.25-38, (2009).

DOI: 10.1146/annurev.med.60.041807.123243

Google Scholar

[81] A. Piga, R. Galanello, G. L. Forni, M. D. Cappellini, R. Origa, A. Zappu, et al., Randomized phase II trial of deferasirox (Exjade, ICL670), a once-daily, orally-administered iron chelator, in comparison to deferoxamine in thalassemia patients with transfusional iron overload,, haematologica, vol. 91, pp.873-880, (2006).

DOI: 10.1182/blood.v108.11.1768.1768

Google Scholar

[82] L. H. Alparslan and B. N. Weissman, Chapter 15 - Imaging Findings of Drug-Related Musculoskeletal Disorders,, in Imaging of Arthritis and Metabolic Bone Disease, B. N. Weissman, Ed., ed Philadelphia: W.B. Saunders, 2009, pp.264-279.

DOI: 10.1016/b978-0-323-04177-5.00015-x

Google Scholar