Chest X-Ray Investigation: A Convolutional Neural Network Approach

Article Preview

Abstract:

Though India being home of one out of every six people in the globe, is facing an arduous task of providing healthcare service, especially to the large number of patients in remote areas due to lack of diagnosis support systems and doctors. It is reported that hospitals in rural areas have an insufficient radiologist due to which thousands of cases are usually handled by single doctor. In this context, we aim to develop an AI based computer-aided diagnosis tool, which can classify abnormalities by reading chest X-ray so that it could assist the doctors in arriving at quick diagnosis. We have employed a Convolutional Neural Network (CNN) designed by Google known as XceptionNet to detect those pathologies in ChestX-ray14 data. Further, same data is being used for executing other CNN- ResNet. Finally, both the results obtained are compared to assess the superior CNN model for X-ray level diagnosis.

You might also be interested in these eBooks

Info:

Pages:

57-70

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Google Scholar

[2] Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017, February). Inception-v4, inception-resnet and the impact of residual connections on learning. In Thirty-first AAAI conference on artificial intelligence.

DOI: 10.1609/aaai.v31i1.11231

Google Scholar

[3] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhouche, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.1-9).

DOI: 10.1109/cvpr.2015.7298594

Google Scholar

[4] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.2818-2826).

DOI: 10.1109/cvpr.2016.308

Google Scholar

[5] Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.1251-1258).

DOI: 10.1109/cvpr.2017.195

Google Scholar

[6] Rajpurkar, P., Irvin, J., Zhu,K., Yang,B., Mehta, H., Duan, T., Ding, D., Bagul, A., Ball, R.L., Langlotz, C., Shpanskaya, K., Lungren, M.P. & Ng, A.Y. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225.

DOI: 10.1371/journal.pmed.1002686

Google Scholar

[7] Tataru, C., Yi, D., Shenoyas, A., & Ma, A. (2017, June). Deep Learning for abnormality detection in Chest X-Ray images. In IEEE Conference on Deep Learning.

Google Scholar

[8] Bar, Y., Diamant, I., Wolf, L., & Greenspan, H. (2015, March). Deep learning with non-medical training used for chest pathology identification. In Medical Imaging 2015: Computer-Aided Diagnosis (Vol. 9414, p. 94140V). International Society for Optics and Photonics.

DOI: 10.1117/12.2083124

Google Scholar

[9] Chowdhary, C. L., Das, T. K., Gurani, V., & Ranjan, A. (2018). An Improved Tumour Identification with Gabor Wavelet Segmentation. Research Journal of Pharmacy and Technology, 11(8), 3451-3456.

DOI: 10.5958/0974-360x.2018.00637.6

Google Scholar

[10] Das, T. K., & Mohapatro, A. (2018). A System for Diagnosing Hepatitis Based on Hybrid Soft Computing Techniques. Indian Journal of Public Health Research & Development, 9(2), 235-239.

DOI: 10.5958/0976-5506.2018.00125.0

Google Scholar

[11] Dunnmon, J. A., Yi, D., Langlotz, C. P., Ré, C., Rubin, D. L., & Lungren, M. P. (2019). Assessment of convolutional neural networks for automated classification of chest radiographs. Radiology, 290(2), 537-544.

DOI: 10.1148/radiol.2018181422

Google Scholar

[12] Yadav, S. S., & Jadhav, S. M. (2019). Deep convolutional neural network based medical image classification for disease diagnosis. Journal of Big Data, 6(1), 113.

DOI: 10.1186/s40537-019-0276-2

Google Scholar

[13] Baltruschat, I. M., Nickisch, H., Grass, M., Knopp, T., & Saalbach, A. (2019). Comparison of deep learning approaches for multi-label chest X-ray classification. Scientific reports, 9(1), 1-10.

DOI: 10.1038/s41598-019-42294-8

Google Scholar

[14] Pasa, F., Golkov, V., Pfeiffer, F., Cremers, D., & Pfeiffer, D. (2019). Efficient deep network architectures for fast chest x-ray tuberculosis screening and visualization. Scientific reports, 9(1), 1-9.

DOI: 10.1038/s41598-019-42557-4

Google Scholar

[15] Luo, J.W, Liu, J.L., & Chong, J. (2018). Pneumoperitoneum on Chest X-Ray: A DCNN Approach to Automated Detection and Localization utilizing Salience and Class Activation Maps, SIIM Conference of Machine Intelligence in Medical Imaging, (2018).

Google Scholar

[16] Islam, M. T., Aowal, M. A., Minhaz, A. T., & Ashraf, K. (2017). Abnormality detection and localization in chest x-rays using deep convolutional neural networks. arXiv preprint arXiv:1705.09850.

Google Scholar

[17] Chowdhary, C. L., Shynu, P.G., & Gurani, V.K. (2020). Exploring breast cancer classification of histopathology images from computer vision and image processing algorithms to deep learning. International Journal of Advanced Science and Technology. (vol. 29(3), pp.43-48).

Google Scholar

[18] Bertrand, H., Hashir, M., & Cohen, J. P. (2019). Do Lateral Views Help Automated Chest X-ray Predictions?. arXiv preprint arXiv:1904.08534.

Google Scholar

[19] Gooßen, A., Deshpande, H., Harder, T., Schwab, E., Baltruschat, I., Mabotuwana, T., ... & Saalbach, A. (2019). Deep Learning for Pneumothorax Detection and Localization in Chest Radiographs. arXiv preprint arXiv:1907.07324.

Google Scholar

[20] Lenga, M., Schulz, H., & Saalbach, A. (2020). Continual Learning for Domain Adaptation in Chest X-ray Classification. arXiv preprint arXiv:2001.05922.

Google Scholar

[21] Senthil Kumar, K., Venkatalakshmi, K., & Karthikeyan, K. (2019). Lung cancer detection using image segmentation by means of various evolutionary algorithms. Computational and mathematical methods in medicine, (2019).

DOI: 10.1155/2019/4909846

Google Scholar

[22] Pham, H. H., Le, T. T., Tran, D. Q., Ngo, D. T., & Nguyen, H. Q. (2019). Interpreting chest X-rays via CNNs that exploit disease dependencies and uncertainty labels. arXiv preprint arXiv:1911.06475.

DOI: 10.1101/19013342

Google Scholar

[23] Chouhan, V., Singh, S. K., Khamparia, A., Gupta, D., Tiwari, P., Moreira, C., Damasevicius, R., & de Albuquerque, V. H. C. (2020). A Novel Transfer Learning Based Approach for Pneumonia Detection in Chest X-ray Images. Applied Sciences, 10(2), 559.

DOI: 10.3390/app10020559

Google Scholar

[24] Behzadi-khormouji, H., Rostami, H., Salehi, S., Derakhshande-Rishehri, T., Masoumi, M., Salemi, S., Keshavarzc, A., Gholamrezanezhadd, A., & Batouli, A. (2020). Deep learning, reusable and problem-based architectures for detection of consolidation on chest X-ray images. Computer methods and programs in biomedicine, 185, 105162.

DOI: 10.1016/j.cmpb.2019.105162

Google Scholar

[25] Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of physiology, 160(1), 106-154.

DOI: 10.1113/jphysiol.1962.sp006837

Google Scholar

[26] Fukushima, K., & Miyake, S. (1982). Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern recognition, 15(6), 455-469.

DOI: 10.1016/0031-3203(82)90024-3

Google Scholar

[27] Werbos, P. (1974). Beyond regression:" new tools for prediction and analysis in the behavioral sciences. Ph. D. dissertation, Harvard University.

Google Scholar

[28] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533-536.

DOI: 10.1038/323533a0

Google Scholar

[29] LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., & Jackel, L. D. (1990). Handwritten digit recognition with a back-propagation network. In Advances in neural information processing systems (pp.396-404).

DOI: 10.1162/neco.1989.1.4.541

Google Scholar

[30] Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural computation, 18(7), 1527-1554.

DOI: 10.1162/neco.2006.18.7.1527

Google Scholar

[31] Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. science, 313(5786), 504-507.

DOI: 10.1126/science.1127647

Google Scholar

[32] Glorot, X., & Bengio, Y. (2010, March). Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics (pp.249-256).

Google Scholar

[33] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp.1097-1105).

DOI: 10.1145/3065386

Google Scholar

[34] Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.3431-3440).

DOI: 10.1109/cvpr.2015.7298965

Google Scholar

[35] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems (pp.91-99).

DOI: 10.1109/tpami.2016.2577031

Google Scholar

[36] Toshev, A., & Szegedy, C. (2014). Deeppose: Human pose estimation via deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.1653-1660).

DOI: 10.1109/cvpr.2014.214

Google Scholar

[37] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

Google Scholar

[38] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.1-9).

DOI: 10.1109/cvpr.2015.7298594

Google Scholar

[39] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.2818-2826).

DOI: 10.1109/cvpr.2016.308

Google Scholar

[40] He, K., Zhang, X., Ren, S., & Sun, J. (2016a). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.770-778).

DOI: 10.1109/cvpr.2016.90

Google Scholar

[41] He, K., Zhang, X., Ren, S., & Sun, J. (2016b, October). Identity mappings in deep residual networks. In European conference on computer vision (pp.630-645). Springer, Cham.

DOI: 10.1007/978-3-319-46493-0_38

Google Scholar

[42] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.4700-4708).

DOI: 10.1109/cvpr.2017.243

Google Scholar

[43] Chen, Y., Li, J., Xiao, H., Jin, X., Yan, S., & Feng, J. (2017). Dual path networks. In Advances in neural information processing systems (pp.4467-4475).

Google Scholar

[44] Reddy, T., RM, S. P., Parimala, M., Chowdhary, C. L., Hakak, S., & Khan, W. Z. (2020). A deep neural networks based model for uninterrupted marine environment monitoring. Computer Communications (Vol. 157, p.64–75).

DOI: 10.1016/j.comcom.2020.04.004

Google Scholar

[45] Chowdhary, C. L., & Acharjya, D.P. (2020). Segmentation and feature extraction in medical imaging: a systematic review. Procedia Computer Science. (Vol. 167, p.26–36).

DOI: 10.1016/j.procs.2020.03.179

Google Scholar

[46] Gadekallu, T. R., Khare, N., Bhattacharya, S., Singh, S., Reddy Maddikunta, P. K., Ra, I. H., & Alazab, M. (2020). Early detection of diabetic retinopathy using PCA-firefly based deep learning model. Electronics, 9(2), 274.

DOI: 10.3390/electronics9020274

Google Scholar

[47] Mohapatro, A., Mahendran, S. K., & Das, T. K. (2020). A Framework for Ranking Hospitals Based on Customer Perception Using Rough Set and Soft Set Techniques. International Journal of Healthcare Information Systems and Informatics (IJHISI). (pp.40-62).

DOI: 10.4018/ijhisi.2020010103

Google Scholar