[1]
Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.
Google Scholar
[2]
Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017, February). Inception-v4, inception-resnet and the impact of residual connections on learning. In Thirty-first AAAI conference on artificial intelligence.
DOI: 10.1609/aaai.v31i1.11231
Google Scholar
[3]
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhouche, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.1-9).
DOI: 10.1109/cvpr.2015.7298594
Google Scholar
[4]
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.2818-2826).
DOI: 10.1109/cvpr.2016.308
Google Scholar
[5]
Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.1251-1258).
DOI: 10.1109/cvpr.2017.195
Google Scholar
[6]
Rajpurkar, P., Irvin, J., Zhu,K., Yang,B., Mehta, H., Duan, T., Ding, D., Bagul, A., Ball, R.L., Langlotz, C., Shpanskaya, K., Lungren, M.P. & Ng, A.Y. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225.
DOI: 10.1371/journal.pmed.1002686
Google Scholar
[7]
Tataru, C., Yi, D., Shenoyas, A., & Ma, A. (2017, June). Deep Learning for abnormality detection in Chest X-Ray images. In IEEE Conference on Deep Learning.
Google Scholar
[8]
Bar, Y., Diamant, I., Wolf, L., & Greenspan, H. (2015, March). Deep learning with non-medical training used for chest pathology identification. In Medical Imaging 2015: Computer-Aided Diagnosis (Vol. 9414, p. 94140V). International Society for Optics and Photonics.
DOI: 10.1117/12.2083124
Google Scholar
[9]
Chowdhary, C. L., Das, T. K., Gurani, V., & Ranjan, A. (2018). An Improved Tumour Identification with Gabor Wavelet Segmentation. Research Journal of Pharmacy and Technology, 11(8), 3451-3456.
DOI: 10.5958/0974-360x.2018.00637.6
Google Scholar
[10]
Das, T. K., & Mohapatro, A. (2018). A System for Diagnosing Hepatitis Based on Hybrid Soft Computing Techniques. Indian Journal of Public Health Research & Development, 9(2), 235-239.
DOI: 10.5958/0976-5506.2018.00125.0
Google Scholar
[11]
Dunnmon, J. A., Yi, D., Langlotz, C. P., Ré, C., Rubin, D. L., & Lungren, M. P. (2019). Assessment of convolutional neural networks for automated classification of chest radiographs. Radiology, 290(2), 537-544.
DOI: 10.1148/radiol.2018181422
Google Scholar
[12]
Yadav, S. S., & Jadhav, S. M. (2019). Deep convolutional neural network based medical image classification for disease diagnosis. Journal of Big Data, 6(1), 113.
DOI: 10.1186/s40537-019-0276-2
Google Scholar
[13]
Baltruschat, I. M., Nickisch, H., Grass, M., Knopp, T., & Saalbach, A. (2019). Comparison of deep learning approaches for multi-label chest X-ray classification. Scientific reports, 9(1), 1-10.
DOI: 10.1038/s41598-019-42294-8
Google Scholar
[14]
Pasa, F., Golkov, V., Pfeiffer, F., Cremers, D., & Pfeiffer, D. (2019). Efficient deep network architectures for fast chest x-ray tuberculosis screening and visualization. Scientific reports, 9(1), 1-9.
DOI: 10.1038/s41598-019-42557-4
Google Scholar
[15]
Luo, J.W, Liu, J.L., & Chong, J. (2018). Pneumoperitoneum on Chest X-Ray: A DCNN Approach to Automated Detection and Localization utilizing Salience and Class Activation Maps, SIIM Conference of Machine Intelligence in Medical Imaging, (2018).
Google Scholar
[16]
Islam, M. T., Aowal, M. A., Minhaz, A. T., & Ashraf, K. (2017). Abnormality detection and localization in chest x-rays using deep convolutional neural networks. arXiv preprint arXiv:1705.09850.
Google Scholar
[17]
Chowdhary, C. L., Shynu, P.G., & Gurani, V.K. (2020). Exploring breast cancer classification of histopathology images from computer vision and image processing algorithms to deep learning. International Journal of Advanced Science and Technology. (vol. 29(3), pp.43-48).
Google Scholar
[18]
Bertrand, H., Hashir, M., & Cohen, J. P. (2019). Do Lateral Views Help Automated Chest X-ray Predictions?. arXiv preprint arXiv:1904.08534.
Google Scholar
[19]
Gooßen, A., Deshpande, H., Harder, T., Schwab, E., Baltruschat, I., Mabotuwana, T., ... & Saalbach, A. (2019). Deep Learning for Pneumothorax Detection and Localization in Chest Radiographs. arXiv preprint arXiv:1907.07324.
Google Scholar
[20]
Lenga, M., Schulz, H., & Saalbach, A. (2020). Continual Learning for Domain Adaptation in Chest X-ray Classification. arXiv preprint arXiv:2001.05922.
Google Scholar
[21]
Senthil Kumar, K., Venkatalakshmi, K., & Karthikeyan, K. (2019). Lung cancer detection using image segmentation by means of various evolutionary algorithms. Computational and mathematical methods in medicine, (2019).
DOI: 10.1155/2019/4909846
Google Scholar
[22]
Pham, H. H., Le, T. T., Tran, D. Q., Ngo, D. T., & Nguyen, H. Q. (2019). Interpreting chest X-rays via CNNs that exploit disease dependencies and uncertainty labels. arXiv preprint arXiv:1911.06475.
DOI: 10.1101/19013342
Google Scholar
[23]
Chouhan, V., Singh, S. K., Khamparia, A., Gupta, D., Tiwari, P., Moreira, C., Damasevicius, R., & de Albuquerque, V. H. C. (2020). A Novel Transfer Learning Based Approach for Pneumonia Detection in Chest X-ray Images. Applied Sciences, 10(2), 559.
DOI: 10.3390/app10020559
Google Scholar
[24]
Behzadi-khormouji, H., Rostami, H., Salehi, S., Derakhshande-Rishehri, T., Masoumi, M., Salemi, S., Keshavarzc, A., Gholamrezanezhadd, A., & Batouli, A. (2020). Deep learning, reusable and problem-based architectures for detection of consolidation on chest X-ray images. Computer methods and programs in biomedicine, 185, 105162.
DOI: 10.1016/j.cmpb.2019.105162
Google Scholar
[25]
Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of physiology, 160(1), 106-154.
DOI: 10.1113/jphysiol.1962.sp006837
Google Scholar
[26]
Fukushima, K., & Miyake, S. (1982). Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern recognition, 15(6), 455-469.
DOI: 10.1016/0031-3203(82)90024-3
Google Scholar
[27]
Werbos, P. (1974). Beyond regression:" new tools for prediction and analysis in the behavioral sciences. Ph. D. dissertation, Harvard University.
Google Scholar
[28]
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088), 533-536.
DOI: 10.1038/323533a0
Google Scholar
[29]
LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., & Jackel, L. D. (1990). Handwritten digit recognition with a back-propagation network. In Advances in neural information processing systems (pp.396-404).
DOI: 10.1162/neco.1989.1.4.541
Google Scholar
[30]
Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural computation, 18(7), 1527-1554.
DOI: 10.1162/neco.2006.18.7.1527
Google Scholar
[31]
Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. science, 313(5786), 504-507.
DOI: 10.1126/science.1127647
Google Scholar
[32]
Glorot, X., & Bengio, Y. (2010, March). Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics (pp.249-256).
Google Scholar
[33]
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp.1097-1105).
DOI: 10.1145/3065386
Google Scholar
[34]
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.3431-3440).
DOI: 10.1109/cvpr.2015.7298965
Google Scholar
[35]
Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems (pp.91-99).
DOI: 10.1109/tpami.2016.2577031
Google Scholar
[36]
Toshev, A., & Szegedy, C. (2014). Deeppose: Human pose estimation via deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.1653-1660).
DOI: 10.1109/cvpr.2014.214
Google Scholar
[37]
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Google Scholar
[38]
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.1-9).
DOI: 10.1109/cvpr.2015.7298594
Google Scholar
[39]
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.2818-2826).
DOI: 10.1109/cvpr.2016.308
Google Scholar
[40]
He, K., Zhang, X., Ren, S., & Sun, J. (2016a). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.770-778).
DOI: 10.1109/cvpr.2016.90
Google Scholar
[41]
He, K., Zhang, X., Ren, S., & Sun, J. (2016b, October). Identity mappings in deep residual networks. In European conference on computer vision (pp.630-645). Springer, Cham.
DOI: 10.1007/978-3-319-46493-0_38
Google Scholar
[42]
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.4700-4708).
DOI: 10.1109/cvpr.2017.243
Google Scholar
[43]
Chen, Y., Li, J., Xiao, H., Jin, X., Yan, S., & Feng, J. (2017). Dual path networks. In Advances in neural information processing systems (pp.4467-4475).
Google Scholar
[44]
Reddy, T., RM, S. P., Parimala, M., Chowdhary, C. L., Hakak, S., & Khan, W. Z. (2020). A deep neural networks based model for uninterrupted marine environment monitoring. Computer Communications (Vol. 157, p.64–75).
DOI: 10.1016/j.comcom.2020.04.004
Google Scholar
[45]
Chowdhary, C. L., & Acharjya, D.P. (2020). Segmentation and feature extraction in medical imaging: a systematic review. Procedia Computer Science. (Vol. 167, p.26–36).
DOI: 10.1016/j.procs.2020.03.179
Google Scholar
[46]
Gadekallu, T. R., Khare, N., Bhattacharya, S., Singh, S., Reddy Maddikunta, P. K., Ra, I. H., & Alazab, M. (2020). Early detection of diabetic retinopathy using PCA-firefly based deep learning model. Electronics, 9(2), 274.
DOI: 10.3390/electronics9020274
Google Scholar
[47]
Mohapatro, A., Mahendran, S. K., & Das, T. K. (2020). A Framework for Ranking Hospitals Based on Customer Perception Using Rough Set and Soft Set Techniques. International Journal of Healthcare Information Systems and Informatics (IJHISI). (pp.40-62).
DOI: 10.4018/ijhisi.2020010103
Google Scholar