[1]
Y. K. Lee, Design of exoskeleton robotic hand/arm system for upper limbs rehabilitation considering mobility and portability,, in 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence, URAI 2014, 2014, vol. 11, no. Urai, p.540–544.
DOI: 10.1109/urai.2014.7057385
Google Scholar
[2]
Balitbangkes, Health Basic Research, Ministry of Health Republic of Indonesia, p.1–100,, Jakarta, Indonesia, (2018).
Google Scholar
[3]
N. Uddin, K. Sundaraj, B. Ahmad, and M. Rahman, A framework for the development of measurement and quality assurance in software-based medical rehabilitation systems,, Int. Symp. Robot. Intell. Sensors, vol. 41, no. Iris, p.53–60, (2012).
DOI: 10.1016/j.proeng.2012.07.142
Google Scholar
[4]
T. Triwiyanto, I. P. A. Pawana, B. G. Irianto, T. B. Indrato, and I. D. G. H. Wisana, Embedded system for upper-limb exoskeleton based on electromyography control,, Telkomnika (Telecommunication Comput. Electron. Control., vol. 17, no. 6, p.2992–3002, (2019).
DOI: 10.12928/telkomnika.v17i6.11670
Google Scholar
[5]
Triwiyanto, O. Wahyunggoro, H. A. Nugroho, and Herianto, String actuated upper limb exoskeleton based on surface electromyography control,, Proc. - 2016 6th Int. Annu. Eng. Semin. Ina. 2016, p.176–181, (2017).
DOI: 10.1109/inaes.2016.7821929
Google Scholar
[6]
A. Rahmatillah, O. N. Rahma, M. Amin, S. I. Wicaksana, K. Ain, and R. Rulaningtyas, Post-Stroke Rehabilitation Exosceleton Movement Control using EMG Signal,, Int. J. Adv. Sci. Eng. Infrormation Technol., vol. 8, no. 2, p.616–621, (2018).
DOI: 10.18517/ijaseit.8.2.4960
Google Scholar
[7]
C. I. De Luca, The Use of Surface Electromyography in Biomechanics,, J. Appl. Biomech., vol. 13, no. 02, p.135–163, (1997).
Google Scholar
[8]
R. Ambar and Y. Yusof, Design of Accelerometer based Wrist Rehabilitation Device,, in 2017 6th ICT International Student Project Conference (ICT-ISPC), 2017, p.2–5.
DOI: 10.1109/ict-ispc.2017.8075342
Google Scholar
[9]
S. W. Pu, J. Y. Chang, Y. C. Pei, C. C. Kuo, and M. J. Wang, Anthropometry-based structural design of a hand exoskeleton for rehabilitation,, in M2VIP 2016 - Proceedings of 23rd International Conference on Mechatronics and Machine Vision in Practice, (2017).
DOI: 10.1109/m2vip.2016.7827282
Google Scholar
[10]
R. Ismail, M. Ariyanto, K. A. Pambudi, J. W. Syafei, and G. P. Ananto, Extra robotic thumb and exoskeleton robotic fingers for patient with hand function disability,, in International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2017, vol. 2017–Decem, no. September, p.19–21.
DOI: 10.1109/eecsi.2017.8239166
Google Scholar
[11]
M. DiCicco, L. Lucas, Y. Matsuoka, M. D. I, L. Lucas, and Y. Matsuokd, Comparison of control strategies for an EMG controlled orthotic exoskeleton for the hand," in IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ,04. 2004, 2004, vol. 2, no. April, p.1622–1627 Vol.2.
DOI: 10.1109/robot.2004.1308056
Google Scholar
[12]
C. Ockenfeld, R. K. Y. Tong, E. A. Susanto, S. K. Ho, and X. L. Hu, Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: Stroke rehabilitation,, in IEEE International Conference on Rehabilitation Robotics, 2013, p.5–8.
DOI: 10.1109/icorr.2013.6650392
Google Scholar
[13]
T. Triwiyanto, O. Wahyunggoro, H. A. Nugroho, and H. Herianto, Muscle fatigue compensation of the electromyography signal for elbow joint angle estimation using adaptive feature,, Comput. Electr. Eng., vol. 71, no. July, p.284–293, Oct. (2018).
DOI: 10.1016/j.compeleceng.2018.07.026
Google Scholar
[14]
M. A. Muqeet, Real-time Monitoring of Electromyography ( EMG ) using IoT and ThingSpeak,, Sci. Technol. Dev., vol. VIII, no. Ix, p.9–13, (2019).
Google Scholar
[15]
S. Martinez Conde and E. Perez Lugue, Exoskeleton For Hand Rehabilitation,, University of Skovde, (2018).
Google Scholar
[16]
F. J. Badesa et al., Hand exoskeleton for rehabilitation therapies with integrated optical force sensor,, Adv. Mech. Eng., vol. 10, no. 2, p.1687814017753881, (2018).
Google Scholar
[17]
C. J. Gearhart, B. Varone, M. H. Stella, B. F. Busha, and S. Member, An Effective 3-Fingered Augmenting Exoskeleton for the Human Hand,, in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, p.590–593.
DOI: 10.1109/embc.2016.7590771
Google Scholar
[18]
N. S. K. Ho et al., An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation,, in 2011 IEEE international conference on rehabilitation robotics, 2011, p.1–5.
DOI: 10.1109/icorr.2011.5975340
Google Scholar
[19]
Z. Lu, K. Tong, H. Shin, S. Li, and P. Zhou, Advanced myoelectric control for robotic hand-assisted training: outcome from a stroke patient,, Front. Neurol., vol. 8, no. March, p.107, (2017).
DOI: 10.3389/fneur.2017.00107
Google Scholar
[20]
M. K. Burns, S. Member, D. Pei, S. Member, and R. Vinjamuri, Myoelectric Control of a Soft Hand Exoskeleton Using Neural Networks and Kinematic,, IEEE Trans. Biomed. Circuits Syst., vol. PP, no. c, p.1, (2019).
DOI: 10.1109/tbcas.2019.2950145
Google Scholar
[21]
P. Heo, S. Member, and J. Kim, Power-Assistive Finger Exoskeleton With a Palmar Opening at the Fingerpad,, IEEE Trans. Biomed. Eng., vol. 61, no. 11, p.2688–2697, (2014).
DOI: 10.1109/tbme.2014.2325948
Google Scholar
[22]
D. Leonardis et al., An EMG-controlled robotic hand exoskeleton for bilateral rehabilitation,, IEEE Trans. Haptics, vol. 8, no. 2, p.140–151, (2015).
DOI: 10.1109/toh.2015.2417570
Google Scholar
[23]
K. Y. Tong et al., An EMG-driven Exoskeleton Hand Robotic Training Device on Chronic Stroke Subjects Task Training System for Stroke Rehabilitation,, (2011).
DOI: 10.1109/icorr.2011.5975340
Google Scholar
[24]
C. D. Takahashi, L. Der-Yeghiaian, V. Le, R. R. Motiwala, and S. C. Cramer, Robot-based hand motor therapy after stroke,, Brain, vol. 131, no. 2, p.425–437, (2008).
DOI: 10.1093/brain/awm311
Google Scholar
[25]
C. D. Takahashi, V. H. Le, S. C. Cramer, L. Der-Yeghiaian, V. H. Le, and S. C. Cramer, A Robotic Device for Hand Motor Therapy After Stroke,, in 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005., 2005, p.17–20.
DOI: 10.1109/icorr.2005.1501041
Google Scholar
[26]
M. Witkowski, M. Cortese, M. Cempini, J. Mellinger, N. Vitiello, and S. R. Soekadar, Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG),, J. Neuroeng. Rehabil., vol. 11, no. 1, p.1–6, (2014).
DOI: 10.1186/1743-0003-11-165
Google Scholar
[27]
K. Y. Tong et al., An intention driven hand functions task training robotic system," 2010 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC,10, p.3406–3409, (2010).
Google Scholar
[28]
K. Tadano, M. Akai, K. Kadota, and K. Kawashima, Development of Grip Amplified Glove using Bi-articular Mechanism,, in 2010 IEEE International Conference on Robotics and Automation, 2010, p.1–6.
DOI: 10.1109/robot.2010.5509393
Google Scholar
[29]
I. Jo, J. Lee, Y. Park, and J. Bae, Design of a wearable hand exoskeleton for exercising flexion/extension of the fingers,, in IEEE International Conference on Rehabilitation Robotics, 2017, p.1615–1620.
DOI: 10.1109/icorr.2017.8009479
Google Scholar
[30]
Y. Hasegawa, Y. Mikami, K. Watanabe, and Y. Sankai, Five-fingered assistive hand with mechanical compliance of human finger,, in Proceedings - IEEE International Conference on Robotics and Automation, 2008, p.718–724.
DOI: 10.1109/robot.2008.4543290
Google Scholar
[31]
A. Wege and G. Hommel, Development and control of a hand exoskeleton for rehabilitation of hand injuries,, in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2005, no. 1, p.3461–3466.
DOI: 10.1109/iros.2005.1545506
Google Scholar
[32]
Diez, J. A., A. Blanco, J. M. Catalán, F. J. Badesa, L. D. Lledó, and N. Garcia-Aracil, Hand exoskeleton for rehabilitation therapies with integrated optical force sensor,, Adv. Mech. Eng., vol. 10, no. 2, p.1–11, (2018).
DOI: 10.1177/1687814017753881
Google Scholar