[1]
Matsushita T. 14 - Orthopaedic applications of metallic biomaterials. In: Niinomi M, editor. Metals for Biomedical Devices: Woodhead Publishing; 2010. pp.329-54.
DOI: 10.1533/9781845699246.4.329
Google Scholar
[2]
Huda Z. Designing Fail-Safe Biomaterials against Wear for Artificial Total Hip Replacement. Journal of Biomimetics, Biomaterials and Tissue Engineering. 2010;6:45-55.
DOI: 10.4028/www.scientific.net/jbbte.6.45
Google Scholar
[3]
Prasad K, Bazaka O, Chua M, Rochford M, Fedrick L, Spoor J, et al. Metallic Biomaterials: Current Challenges and Opportunities. Materials. 2017;10.
DOI: 10.3390/ma10080884
Google Scholar
[4]
Guneta V, Wang JK, Maleksaeedi S, He ZM, Wong MTC, Choong C. Three Dimensional Printing of Titanium for Bone Tissue Engineering Applications: A Preliminary Study. Journal of Biomimetics, Biomaterials and Biomedical Engineering. 2014; 21:101-15.
DOI: 10.4028/www.scientific.net/jbbbe.21.101
Google Scholar
[5]
Niinomi M, Nakai M. Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone. International Journal of Biomaterials. 2011; 2011:836587.
DOI: 10.1155/2011/836587
Google Scholar
[6]
Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Progress in Materials Science. 2009; 54:397-425.
DOI: 10.1016/j.pmatsci.2008.06.004
Google Scholar
[7]
Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998; 19:1621-39.
DOI: 10.1016/s0142-9612(97)00146-4
Google Scholar
[8]
Wang C, Hu H, Li Z, Shen Y, Xu Y, Zhang G, et al. Enhanced Osseointegration of Titanium Alloy Implants with Laser Microgrooved Surfaces and Graphene Oxide Coating. ACS Applied Materials & Interfaces. 2019; 11:39470-83.
DOI: 10.1021/acsami.9b12733
Google Scholar
[9]
Yada M, Inoue Y, Sakamoto A, Torikai T, Watari T. Synthesis and Controllable Wettability of Micro- and Nanostructured Titanium Phosphate Thin Films Formed on Titanium Plates. ACS Applied Materials & Interfaces. 2014; 6:7695-704.
DOI: 10.1021/am500974v
Google Scholar
[10]
Veronesi F, Giavaresi G, Fini M, Longo G, Ioannidu CA, Scotto d'Abusco A, et al. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon. Materials Science and Engineering: C. 2017; 70:264-71.
DOI: 10.1016/j.msec.2016.08.076
Google Scholar
[11]
Marcatti Amarú Maximiano W, Marino Mazucato V, Tambasco de Oliveira P, Célia Jamur M, Oliver C. Nanotextured titanium surfaces stimulate spreading, migration, and growth of rat mast cells. Journal of Biomedical Materials Research Part A. 2017; 105:2150-61.
DOI: 10.1002/jbm.a.36076
Google Scholar
[12]
Subramani K. Titanium Surface Modification Techniques for Implant Fabrication – From Microscale to the Nanoscale. Journal of Biomimetics, Biomaterials and Tissue Engineering. 2010; 5:39-56.
DOI: 10.4028/www.scientific.net/jbbte.5.39
Google Scholar
[13]
Mediaswanti K. Bactericidal Coatings for Bone Implant Applications. Journal of Biomimetics, Biomaterials and Biomedical Engineering. 2016; 28:53-6.
DOI: 10.4028/www.scientific.net/jbbbe.28.53
Google Scholar
[14]
Cha Y, Chae W, Kim H, Walcott H, Peterson SD, Porfiri M. Energy harvesting from a piezoelectric biomimetic fish tail. Renewable Energy. 2016;86:449-58.
DOI: 10.1016/j.renene.2015.07.077
Google Scholar
[15]
Moreira FTC, Truta LAANA, Sales MGF. Biomimetic materials assembled on a photovoltaic cell as a novel biosensing approach to cancer biomarker detection. Scientific Reports. 2018; 8:10205.
DOI: 10.1038/s41598-018-27884-2
Google Scholar
[16]
Borsellino C, Bella GD. Paper-reinforced biomimetic cellular structures for automotive applications. Materials & Design. 2009; 30:4054-9.
DOI: 10.1016/j.matdes.2009.05.013
Google Scholar
[17]
Khuong TL, Gang Z, Farid M, Yu R, Sun ZZ, Rizwan M. Tensile Strength and Flexural Strength Testing of Acrylonitrile Butadiene Styrene (ABS) Materials for Biomimetic Robotic Applications. Journal of Biomimetics, Biomaterials and Biomedical Engineering. 2014; 20:11-21.
DOI: 10.4028/www.scientific.net/jbbbe.20.11
Google Scholar
[18]
Zhou PJ, Liu T, Zhou XH, Mou JG, Zheng SH, Gu YQ, et al. Overview of Progress in Development of the Bionic Underwater Propulsion System. Journal of Biomimetics, Biomaterials and Biomedical Engineering. 2017;32:9-19.
DOI: 10.4028/www.scientific.net/jbbbe.32.9
Google Scholar
[19]
Zhao J, Yan S, Deng L, Huang H, Liu Y. Design and Analysis of Biomimetic Nose Cone for Morphing of Aerospace Vehicle. Journal of Bionic Engineering. 2017;14:317-26.
DOI: 10.1016/s1672-6529(16)60400-6
Google Scholar
[20]
Schühle DT, Peters JA, Schatz J. Metal binding calixarenes with potential biomimetic and biomedical applications. Coordination Chemistry Reviews. 2011;255:2727-45.
DOI: 10.1016/j.ccr.2011.04.005
Google Scholar
[21]
Mehzabeen KR, Sureshkumar A, Thangavel A, Chong B, Guazzato M, Ruys AJ, et al. Development of a Novel Biomimetic Dental Wear System. Journal of Biomimetics, Biomaterials and Tissue Engineering. 2012;15:23-35.
DOI: 10.4028/www.scientific.net/jbbte.15.23
Google Scholar
[22]
Montgomerie Z, Popat KC. Improved hemocompatibility and reduced bacterial adhesion on superhydrophobic titania nanoflower surfaces. Materials Science and Engineering: C. 2021;119: 111503.
DOI: 10.1016/j.msec.2020.111503
Google Scholar
[23]
Zheng XT, He HL, Li CM. Multifunctional graphene quantum dots-conjugated titanate nanoflowers for fluorescence-trackable targeted drug delivery. RSC Advances. 2013;3:24853-7.
DOI: 10.1039/c3ra44125c
Google Scholar
[24]
Wu J-M, Huang B, Wang M, Osaka A. Titania Nanoflowers with High Photocatalytic Activity. Journal of the American Ceramic Society. 2006; 89: 2660-3.
DOI: 10.1111/j.1551-2916.2006.01104.x
Google Scholar
[25]
Dong B, Chai YM, Liu YQ, Liu CG. Hydrothermal Synthesis and Characterization of Novel MoS2 Nanoflowers Directed by Ionic Liquid. Advanced Materials Research. 2011;194-196:785-9.
DOI: 10.4028/www.scientific.net/amr.194-196.785
Google Scholar
[26]
Javed S, Akram MA, Mujahid M. Environment friendly template-free microwave synthesis of submicron-sized hierarchical titania nanostructures and their application in photovoltaics. CrystEngComm. 2014; 16:10937-42.
DOI: 10.1039/c4ce01826e
Google Scholar
[27]
Faisal AQD. Synthesis and characteristics study of TiO2 nanowires and nanoflowers on FTO/glass and glass substrates via hydrothermal technique. Journal of Materials Science: Materials in Electronics. 2015; 26:317-21.
DOI: 10.1007/s10854-014-2402-4
Google Scholar
[28]
Huang J, Cao Y, Liu Z, Deng Z, Wang W. Application of titanate nanoflowers for dye removal: A comparative study with titanate nanotubes and nanowires. Chemical Engineering Journal. 2012; 191:38-44.
DOI: 10.1016/j.cej.2012.01.057
Google Scholar
[29]
Shende P, Kasture P, Gaud RS. Nanoflowers: the future trend of nanotechnology for multi-applications. Artificial Cells, Nanomedicine, and Biotechnology. 2018;46:413-22.
DOI: 10.1080/21691401.2018.1428812
Google Scholar
[30]
Virk HS. Fabrication of Nanoflowers and other Exotic Patterns. Solid State Phenomena. 2013;201:159-80.
DOI: 10.4028/www.scientific.net/ssp.201.159
Google Scholar
[31]
Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, et al. Enhanced Bone Apposition to a Chemically Modified SLA Titanium Surface. Journal of Dental Research. 2004; 83:529-33.
DOI: 10.1177/154405910408300704
Google Scholar
[32]
Sartoretto SC, Calasans-Maia JdA, Costa YOd, Louro RS, Granjeiro JM, Calasans-Maia MD. Accelerated Healing Period with Hydrophilic Implant Placed in Sheep Tibia. Brazilian Dental Journal. 2017;28:559-65.
DOI: 10.1590/0103-6440201601559
Google Scholar
[33]
Lang NP, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Bosshardt DD. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clinical Oral Implants Research. 2011; 22:349-56.
DOI: 10.1111/j.1600-0501.2011.02172.x
Google Scholar
[34]
Nicolau P Fau - Guerra F, Guerra F Fau - Reis R, Reis R Fau - Krafft T, Krafft T Fau - Benz K, Benz K Fau - Jackowski J, Jackowski J. 10-year outcomes with immediate and early loaded implants with a chemically modified SLA surface FAU - Nicolau, Pedro.
DOI: 10.1093/benz/9780199773787.article.b00061956
Google Scholar
[35]
van Velzen FJJ, Ofec R, Schulten EAJM, ten Bruggenkate CM. 10-year survival rate and the incidence of peri-implant disease of 374 titanium dental implants with a SLA surface: a prospective cohort study in 177 fully and partially edentulous patients. Clinical Oral Implants Research. 2015; 26:1121-8.
DOI: 10.1111/clr.12499
Google Scholar
[36]
Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM. A Survey of Structure−Property Relationships of Surfaces that Resist the Adsorption of Protein. Langmuir. 2001; 17:5605-20.
DOI: 10.1021/la010384m
Google Scholar
[37]
Bousnaki M, Koidis P. Advances on Biomedical Titanium Surface Interactions. Journal of Biomimetics, Biomaterials and Tissue Engineering. 2014;19:43-64.
DOI: 10.4028/www.scientific.net/jbbte.19.43
Google Scholar
[38]
Subramani K, Mathew R, Hosseinkhani H, Hosseinkhani M. Bone Regeneration around Dental Implants as a Treatment for Peri-Implantitis: A Review of the Literature. Journal of Biomimetics, Biomaterials and Tissue Engineering. 2011; 11:21-33.
DOI: 10.4028/www.scientific.net/jbbte.11.21
Google Scholar
[39]
Ma T, Ge X, Zhang Y, Lin Y. Effect of Titanium Surface Modifications of Dental Implants on Rapid Osseointegration. In: Sasaki K, Suzuki O, Takahashi N, editors. Interface Oral Health Science 2016. Singapore: Springer Singapore; 2017. pp.247-56.
DOI: 10.1007/978-981-10-1560-1_20
Google Scholar
[40]
Gentleman MM, Gentleman E. The role of surface free energy in osteoblast–biomaterial interactions. International Materials Reviews. 2014;59:417-29.
DOI: 10.1179/1743280414y.0000000038
Google Scholar
[41]
Hallab NJ, Bundy KJ, O'Connor K, Moses RL, Jacobs JJ. Evaluation of Metallic and Polymeric Biomaterial Surface Energy and Surface Roughness Characteristics for Directed Cell Adhesion. Tissue Engineering. 2001;7:55-71.
DOI: 10.1089/107632700300003297
Google Scholar
[42]
Spurr RA, Myers H. Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer. Analytical Chemistry. 1957;29:760-2.
DOI: 10.1021/ac60125a006
Google Scholar
[43]
Wang C-C, Ying JY. Sol−Gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals. Chemistry of Materials. 1999;11:3113-20.
DOI: 10.1021/cm990180f
Google Scholar
[44]
Hu W, Li L, Li G, Liu Y, Withers RL. Atomic-scale control of TiO6 octahedra through solution chemistry towards giant dielectric response. Scientific Reports. 2014;4:6582.
DOI: 10.1038/srep06582
Google Scholar
[45]
Zhang Z, Goodall JBM, Brown S, Karlsson L, Clark RJH, Hutchison JL, et al. Continuous hydrothermal synthesis of extensive 2D sodium titanate (Na2Ti3O7) nano-sheets. Dalton Transactions. 2010;39:711-4.
DOI: 10.1039/b915699b
Google Scholar
[46]
Divya Rani VV, Manzoor K, Menon D, Selvamurugan N, Nair SV. The design of novel nanostructures on titanium by solution chemistry for an improved osteoblast response. Nanotechnology. 2009;20:195101.
DOI: 10.1088/0957-4484/20/19/195101
Google Scholar
[47]
Ohto T, Mishra A, Yoshimune S, Nakamura H, Bonn M, Nagata Y. Influence of surface polarity on water dynamics at the water/rutile TiO2(110) interface. Journal of Physics: Condensed Matter. 2014; 26:244102.
DOI: 10.1088/0953-8984/26/24/244102
Google Scholar
[48]
Shkol'nikov EV. Thermodynamics of the dissolution of amorphous and polymorphic TiO2 modifications in acid and alkaline media. Russian Journal of Physical Chemistry A. 2016; 90: 567-71.
DOI: 10.1134/s0036024416030286
Google Scholar
[49]
Ponsonnet L, Reybier K, Jaffrezic N, Comte V, Lagneau C, Lissac M, et al. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Materials Science and Engineering: C. 2003; 23:551-60.
DOI: 10.1016/s0928-4931(03)00033-x
Google Scholar