p.11
p.20
p.29
p.38
p.47
p.55
p.66
p.76
p.86
Tantalum as a Novel Biomaterial for Bone Implant: A Literature Review
Abstract:
Titanium (Ti) has been used in metallic implants since the 1950s due to various biocompatible and mechanical properties. However, due to its high Young’s modulus, it has been modified over the years in order to produce a better biomaterial. Tantalum (Ta) has recently emerged as a new potential biomaterial for bone and dental implants. It has been reported to have better corrosion resistance and osteo-regenerative properties as compared to Ti alloys which are most widely used in the bone-implant industry. Currently, Tantalum cannot be widely used yet due to its limited availability, high melting point, and high-cost production. This review paper discusses various manufacturing methods of Tantalum alloys, including conventional and additive manufacturing and also discusses their drawbacks and shortcomings. Recent research includes surface modification of various metals using Tantalum coatings in order to combine bulk material properties of different materials and the porous surface properties of Tantalum. Design modification also plays a crucial role in controlling bulk properties. The porous design does provide a lower density, wider surface area, and more immense specific strength. In addition to improved mechanical properties, a porous design could also escalate the material's biological and permeability properties. With current advancement in additive manufacturing technology, difficulties in processing Tantalum could be resolved. Therefore, Tantalum should be considered as a serious candidate material for future bone and dental implants.
Info:
Periodical:
Pages:
55-65
Citation:
Online since:
August 2021
Authors:
Keywords:
Price:
Сopyright:
© 2021 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] M. Javaid, A. Haleem, Additive manufacturing applications in orthopaedics: a review, J. Clin. Orthop. Trauma. 9 (2018) 202–206.
[2] J.L. Domingo, Vanadium and tungsten derivatives as antidiabetic agents, Biol. Trace Elem. Res. 88 (2002) 97–112.
[3] S. Sehatzadeh, K. Kaulback, L. Levin, Metal-on-metal hip resurfacing arthroplasty: an analysis of safety and revision rates, Ont. Health Technol. Assess. Ser. 12 (2012) 1.
[4] C. Betts, Benefits of metal foams and developments in modelling techniques to assess their materials behaviour: a review, Mater. Sci. Technol. 28 (2012) 129–143.
[5] M. Yazdimamaghani, M. Razavi, D. Vashaee, K. Moharamzadeh, A.R. Boccaccini, L. Tayebi, Porous magnesium-based scaffolds for tissue engineering, Mater. Sci. Eng. C. 71 (2017) 1253–1266.
[6] J. Fischer, D. Pröfrock, N. Hort, R. Willumeit, F. Feyerabend, Improved cytotoxicity testing of magnesium materials, Mater. Sci. Eng. B. 176 (2011) 830–834.
[7] K. Bobe, E. Willbold, I. Morgenthal, O. Andersen, T. Studnitzky, J. Nellesen, W. Tillmann, C. Vogt, K. Vano, F. Witte, In vitro and in vivo evaluation of biodegradable, open-porous scaffolds made of sintered magnesium W4 short fibres, Acta Biomater. 9 (2013) 8611–8623.
[8] P. Habibovic, H. Yuan, C.M. Van Der Valk, G. Meijer, C.A. van Blitterswijk, K. De Groot, 3D microenvironment as essential element for osteoinduction by biomaterials, Biomaterials. 26 (2005) 3565–3575.
[9] B. Otsuki, M. Takemoto, S. Fujibayashi, M. Neo, T. Kokubo, T. Nakamura, Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants, Biomaterials. 27 (2006) 5892–5900.
[10] D.M. Brunette, P. Tengvall, M. Textor, P. Thomse Titanium in Medicine, (2001).
[11] R. Wauthle, J. Van Der Stok, S.A. Yavari, J. Van Humbeeck, J.-P. Kruth, A.A. Zadpoor, H. Weinans, M. Mulier, J. Schrooten, Additively manufactured porous tantalum implants, Acta Biomater. 14 (2015) 217–225.
[12] M. Mour, D. Das, T. Winkler, E. Hoenig, G. Mielke, M.M. Morlock, A.F. Schilling, Advances in porous biomaterials for dental and orthopaedic applications, Materials (Basel). 3 (2010) 2947–2974.
DOI: 10.3390/ma3052947
[13] M. Niinomi, Mechanical biocompatibilities of titanium alloys for biomedical applications, J. Mech. Behav. Biomed. Mater. 1 (2008) 30–42.
[14] S.M. Kurtz, J.N. Devine, PEEK biomaterials in trauma, orthopedic, and spinal implants, Biomaterials. 28 (2007) 4845–4869.
[15] J.D. Bobyn, G.J. Stackpool, S.A. Hacking, M. Tanzer, J.J. Krygier, Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial, J. Bone Joint Surg. Br. 81 (1999) 907–914.
[16] H. Wang, J. Li, H. Yang, C. Liu, J. Ruan, Fabrication, characterization and in vitro biocompatibility evaluation of porous Ta–Nb alloy for bone tissue engineering, Mater. Sci. Eng. C. 40 (2014) 71–75.
[17] N.P. Sheth, J.H. Lonner, Clinical use of porous tantalum in complex primary total knee arthroplasty, Am J Orthop (Belle Mead NJ). 38 (2009) 526–530.
[18] S. Wu, X. Liu, K.W.K. Yeung, C. Liu, X. Yang, Biomimetic porous scaffolds for bone tissue engineering, Mater. Sci. Eng. R Reports. 80 (2014) 1–36.
[19] X. Wei, D. Zhao, B. Wang, W. Wang, K. Kang, H. Xie, B. Liu, X. Zhang, J. Zhang, Z. Yang, Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo, Exp. Biol. Med. 241 (2016) 592–602.
[20] K. Hamaguchi, T. Tsuchiyama, J. Matsushita, Oxidation of Tantalum Nitride, Mater. Sci. Forum. 761 (2013) 125–129.
[21] J.-P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, Consolidation phenomena in laser and powder-bed based layered manufacturing, CIRP Ann. 56 (2007) 730–759.
[22] G. Campoli, M.S. Borleffs, S.A. Yavari, R. Wauthle, H. Weinans, A.A. Zadpoor, Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing, Mater. Des. 49 (2013) 957–965.
[23] S.M. Ahmadi, G. Campoli, S.A. Yavari, B. Sajadi, R. Wauthlé, J. Schrooten, H. Weinans, A.A. Zadpoor, Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells, J. Mech. Behav. Biomed. Mater. 34 (2014) 106–115.
[24] B.S. Bal, M.N. Rahaman, Orthopedic applications of silicon nitride ceramics, Acta Biomater. 8 (2012) 2889–2898.
[25] C.-C. Niu, J.-C. Liao, W.-J. Chen, L.-H. Chen, Outcomes of interbody fusion cages used in 1 and 2-levels anterior cervical discectomy and fusion: titanium cages versus polyetheretherketone (PEEK) cages, Clin. Spine Surg. 23 (2010) 310–316.
[26] A.L. Rosa, M.M. Beloti, Effect of cpTi surface roughness on human bone marrow cell attachment, proliferation, and differentiation, Braz. Dent. J. 14 (2003) 16–21.
[27] G. Lewis, Properties of open-cell porous metals and alloys for orthopaedic applications, J. Mater. Sci. Mater. Med. 24 (2013) 2293–2325.
[28] M. Niinomi, Metallic biomaterials, J. Artif. Organs. 11 (2008) 105–110.
[29] V.K. Balla, S. Banerjee, S. Bose, A. Bandyopadhyay, Direct laser processing of a tantalum coating on titanium for bone replacement structures, Acta Biomater. 6 (2010) 2329–2334.
[30] M. Navarro, A. Michiardi, O. Castano, J.A. Planell, Biomaterials in orthopaedics, J. R. Soc. Interface. 5 (2008) 1137–1158.
[31] T. Kokubo, H.-M. Kim, M. Kawashita, Novel bioactive materials with different mechanical properties, Biomaterials. 24 (2003) 2161–2175.
[32] M.H. Uddin, T. Matsumoto, M. Okazaki, A. Nakahira, T. Sohmura, Biomimetic fabrication of apatite related biomaterials, Biomimetics Learn. from Nat. (2010) 63.
DOI: 10.5772/8777
[33] K. Niespodziana, K. Jurczyk, M. Jurczyk, The synthesis of titanium alloys for biomedical applications, Rev. Adv. Mater. Sci. 18 (2008) 236–240.
[34] S.G. Steinemann, Titanium—the material of choice?, Periodontol. 2000. 17 (1998) 7–21.
[35] M. Niinomi, Recent metallic materials for biomedical applications, Metall. Mater. Trans. A. 33 (2002) 477–486.
[36] A.H. Yusop, A.A. Bakir, N.A. Shaharom, M.R. Abdul Kadir, H. Hermawan, Porous biodegradable metals for hard tissue scaffolds: a review, Int. J. Biomater. 2012 (2012).
DOI: 10.1155/2012/641430
[37] F. Witte, H. Ulrich, M. Rudert, E. Willbold, Biodegradable magnesium scaffolds: Part 1: appropriate inflammatory response, J. Biomed. Mater. Res. Part A. 81 (2007) 748–756.
DOI: 10.1002/jbm.a.31170
[38] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials. 26 (2005) 5474–5491.
[39] D.M. Yunos, O. Bretcanu, A.R. Boccaccini, Polymer-bioceramic composites for tissue engineering scaffolds, J. Mater. Sci. 43 (2008) 4433–4442.
[40] W.L. Murphy, R.G. Dennis, J.L. Kileny, D.J. Mooney, Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds, Tissue Eng. 8 (2002) 43–52.
[41] G. Bouet, D. Marchat, M. Cruel, L. Malaval, L. Vico, In vitro three-dimensional bone tissue models: from cells to controlled and dynamic environment., Tissue Eng. Part B. Rev. 21 (2015) 133–156.
[42] J. Black, Biologic performance of tantalum, Clin. Mater. 16 (1994) 167–173.
[43] D.M. Findlay, K. Welldon, G.J. Atkins, D.W. Howie, A.C.W. Zannettino, D. Bobyn, The proliferation and phenotypic expression of human osteoblasts on tantalum metal, Biomaterials. 25 (2004) 2215–2227.
[44] J.A. Helsen, Y. Missirlis, Biomaterials: a Tantalus experience, Springer Science & Business Media, (2010).
[45] H. Matsuno, A. Yokoyama, F. Watari, M. Uo, T. Kawasaki, Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium., Biomaterials. 22 (2001) 1253–1262.
[46] C.B. Johansson, H.A. Hansson, T. Albrektsson, Qualitative interfacial study between bone and tantalum, niobium or commercially pure titanium, Biomaterials. 11 (1990) 277–280.
[47] B.R. Levine, S. Sporer, R.A. Poggie, C.J. Della Valle, J.J. Jacobs, Experimental and clinical performance of porous tantalum in orthopedic surgery, Biomaterials. 27 (2006) 4671–4681.
[48] J.D. Bobyn, K.-K. Toh, S.A. Hacking, M. Tanzer, J.J. Krygier, Tissue response to porous tantalum acetabular cups: a canine model, J. Arthroplasty. 14 (1999) 347–354.
[49] J.D. Bobyn, R.A. Poggie, J.J. Krygier, D.G. Lewallen, A.D. Hanssen, R.J. Lewis, A.S. Unger, T.J. O'keefe, M.J. Christie, S. Nasser, Clinical validation of a structural porous tantalum biomaterial for adult reconstruction, JBJS. 86 (2004) 123–129.
[50] S.J. Li, R. Yang, S. Li, Y.L. Hao, Y.Y. Cui, M. Niinomi, Z.X. Guo, Wear characteristics of Ti–Nb–Ta–Zr and Ti–6Al–4V alloys for biomedical applications, Wear. 257 (2004) 869–876.
[51] M. Tane, S. Akita, T. Nakano, K. Hagihara, Y. Umakoshi, M. Niinomi, H. Nakajima, Peculiar elastic behavior of Ti–Nb–Ta–Zr single crystals, Acta Mater. 56 (2008) 2856–2863.
[52] R.Z. Valiev, R.K. Islamgaliev, I. V Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103–189.
[53] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process, Acta Mater. 47 (1999) 579–583.
[54] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893–979.
[55] M. Niinomi, H. Fukui, T. Hattori, K. Kyo, A. Suzuki, Development of high biocompatible titanium alloy, Mater. Japan(Japan). 41 (2002) 221–223.
[56] H. Yilmazer, M. Niinomi, T. Akahori, M. Nakai, H. Tsutsumi, Effect of severe plastic deformation and thermo-mechanical treatments on microstructures and mechanical properties of β-type titanium alloys for biomedical applications, (2009).
[57] H. Yilmazer, M. Niinomi, M. Nakai, K. Cho, J. Hieda, Y. Todaka, T. Miyazaki, Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion, Mater. Sci. Eng. C, Biomim. Mater. Sensors Syst. 33 (n.d.) 2499–2507.
[58] X. Song, M. Niinomi, M. Nakai, H. Tsutsumi, L. Wang, Improvement in fatigue strength while keeping low Young's modulus of a β-type titanium alloy through yttrium oxide dispersion, Mater. Sci. Eng. C. 32 (2012) 542–549.
[59] M. Niinomi, M. Nakai, S. Yonezawa, X. Song, L. Wang, Effect of TiB2 or Y2O3 Additions on Mechanical Biofunctionality of Ti-29Nb-13Ta-4.6Zr for Biomedical Applications, Ceram. Trans. 228 (2011) 75–81.
[60] M. Niinomi, M. Nakai, Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone, Int. J. Biomater. 2011 (2011) 836587.
DOI: 10.1155/2011/836587
[61] N. Sumitomo, K. Noritake, T. Hattori, K. Morikawa, S. Niwa, K. Sato, M. Niinomi, Experiment study on fracture fixation with low rigidity titanium alloy: plate fixation of tibia fracture model in rabbit., J. Mater. Sci. Mater. Med. 19 (2008) 1581–1586.
[62] S. Minagar, C.C. Berndt, J. Wang, E. Ivanova, C. Wen, A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces, Acta Biomater. 8 (2012) 2875–2888.
[63] H. Nakada, Y. Numata, T. Sakae, Y. Okazaki, Y. Tanimoto, H. Tamaki, T. Katou, A. Ookubo, K. Kobayashi, R. LeGeros, Comparison of Bone Mineral Density and Area of Newly Formed Bone Around Ti15%Zr4%Nb4%Ta Alloy and Ti6%Al4%V Alloy Implants, J. Hard Tissue Biol. - J HARD TISSUE BIOL. 17 (2008) 99–108.
DOI: 10.2485/jhtb.17.99
[64] C. Arnould, J. Delhalle, Z. Mekhalif, Multifunctional hybrid coating on titanium towards hydroxyapatite growth: Electrodeposition of tantalum and its molecular functionalization with organophosphonic acids films, Electrochim. Acta. 53 (2008) 5632–5638.
[65] C. Arnould, C. Volcke, C. Lamarque, P.A. Thiry, J. Delhalle, Z. Mekhalif, Titanium modified with layer-by-layer sol-gel tantalum oxide and an organodiphosphonic acid: a coating for hydroxyapatite growth., J. Colloid Interface Sci. 336 (2009) 497–503.
[66] V.K. Balla, P.D. DeVasConCellos, W. Xue, S. Bose, A. Bandyopadhyay, Fabrication of compositionally and structurally graded Ti–TiO2 structures using laser engineered net shaping (LENS), Acta Biomater. 5 (2009) 1831–1837.
[67] B. Vamsi Krishna, W. Xue, S. Bose, A. Bandyopadhyay, Engineered porous metals for implants, JOM. 60 (2008) 45–48.
[68] A. Bandyopadhyay, B. V Krishna, W. Xue, S. Bose, Application of Laser Engineered Net Shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants, J. Mater. Sci. Mater. Med. 20 (2008) 29.
[69] B. Vamsi Krishna, W. Xue, S. Bose, A. Bandyopadhyay, Functionally graded Co–Cr–Mo coating on Ti–6Al–4V alloy structures, Acta Biomater. 4 (2008) 697–706.
[70] M. Roy, B. Vamsi Krishna, A. Bandyopadhyay, S. Bose, Laser processing of bioactive tricalcium phosphate coating on titanium for load-bearing implants, Acta Biomater. 4 (2008) 324–333.
[71] B.V. Krishna, S. Bose, A. Bandyopadhyay, Low stiffness porous Ti structures for load-bearing implants, Acta Biomater. 3 (2007) 997–1006.
[72] B.V. Krishna, S. Bose, A. Bandyopadhyay, Laser Processing of Net-Shape NiTi Shape Memory Alloy, Metall. Mater. Trans. A. 38 (2007) 1096–1103.
[73] W. Xue, B.V. Krishna, A. Bandyopadhyay, S. Bose, Processing and biocompatibility evaluation of laser processed porous titanium, Acta Biomater. 3 (2007) 1007–1018.
[74] V.K. Balla, W. Xue, S. Bose, A. Bandyopadhyay, Laser-assisted Zr/ZrO2 coating on Ti for load-bearing implants, Acta Biomater. 5 (2009) 2800–2809.
[75] K. Webb, V. Hlady, P.A. Tresco, Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization., J. Biomed. Mater. Res. 41 (1998) 422–430.
DOI: 10.1002/(sici)1097-4636(19980905)41:3<422::aid-jbm12>3.0.co;2-k
[76] Y.M. Zhang, P. Bataillon-Linez, P. Huang, Y.M. Zhao, Y. Han, M. Traisnel, K.W. Xu, H.F. Hildebrand, Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior., J. Biomed. Mater. Res. A. 68 (2004) 383–391.
DOI: 10.1002/jbm.a.20063
[77] S.A. Redey, M. Nardin, D. Bernache-Assolant, C. Rey, P. Delannoy, L. Sedel, P.J. Marie, Behavior of human osteoblastic cells on stoichiometric hydroxyapatite and type A carbonate apatite: role of surface energy., J. Biomed. Mater. Res. 50 (2000) 353–364.
DOI: 10.1002/(sici)1097-4636(20000605)50:3<353::aid-jbm9>3.0.co;2-c
[78] K. Das, S. Bose, A. Bandyopadhyay, Surface modifications and cell–materials interactions with anodized Ti, Acta Biomater. 3 (2007) 573–585.
[79] S. Myllymaa, E. Kaivosoja, K. Myllymaa, T. Sillat, H. Korhonen, R. Lappalainen, Y.T. Konttinen, Adhesion, spreading and osteogenic differentiation of mesenchymal stem cells cultured on micropatterned amorphous diamond, titanium, tantalum and chromium coatings on silicon., J. Mater. Sci. Mater. Med. 21 (2010) 329–341.
[80] L. V Gulotta, D. Wiznia, M. Cunningham, L. Fortier, S. Maher, S.A. Rodeo, What's new in orthopaedic research., J. Bone Joint Surg. Am. 93 (2011) 2136–2141.
DOI: 10.2106/jbjs.k.00981
[81] V.P. Mantripragada, B. Lecka-Czernik, N.A. Ebraheim, A.C. Jayasuriya, An overview of recent advances in designing orthopedic and craniofacial implants., J. Biomed. Mater. Res. A. 101 (2013) 3349–3364.
DOI: 10.1002/jbm.a.34605
[82] R.D. Russell, K.A. Estrera, R. Pivec, M.A. Mont, M.H. Huo, What's new in total hip arthroplasty., J. Bone Joint Surg. Am. 95 (2013) 1719–1725.
DOI: 10.2106/jbjs.m.00764
[83] B. Levine, C.J. Della Valle, J.J. Jacobs, Applications of porous tantalum in total hip arthroplasty., J. Am. Acad. Orthop. Surg. 14 (2006) 646–655.
[84] B. Levine, A New Era in Porous Metals: Applications in Orthopaedics, Adv. Eng. Mater. 10 (2008) 788–792.
[85] R.O. Ritchie, Mechanisms of fatigue-crack propagation in ductile and brittle solids, Int. J. Fract. 100 (1999) 55–83.
[86] R. Huiskes, R. Ruimerman, G.H. van Lenthe, J.D. Janssen, Effects of mechanical forces on maintenance and adaptation of form in trabecular bone., Nature. 405 (2000) 704–706.
DOI: 10.1038/35015116
[87] W.G. Paprosky, P.G. Perona, J.M. Lawrence, Acetabular defect classification and surgical reconstruction in revision arthroplasty. A 6-year follow-up evaluation., J. Arthroplasty. 9 (1994) 33–44.
[88] R.M. Meneghini, C. Meyer, C.A. Buckley, A.D. Hanssen, D.G. Lewallen, Mechanical stability of novel highly porous metal acetabular components in revision total hip arthroplasty., J. Arthroplasty. 25 (2010) 337–341.
[89] M. Fernández-Fairen, A. Murcia, A. Blanco, A. Meroño, A.J. Murcia, J. Ballester, Revision of failed total hip arthroplasty acetabular cups to porous tantalum components: a 5-year follow-up study., J. Arthroplasty. 25 (2010) 865–872.
[90] P.J. Rao, M.H. Pelletier, W.R. Walsh, R.J. Mobbs, Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration., Orthop. Surg. 6 (2014) 81–89.
DOI: 10.1111/os.12098
[91] S. Fujimoto, V. Raman, H. Tsuchiya, Surface modification of β-Type titanium alloy by electrochemical potential pulse polarization, J. Phys. Conf. Ser. 165 (2009) 12007.
[92] M. Niinomi, M. Nakai, J. Hieda, Development of new metallic alloys for biomedical applications, Acta Biomater. 8 (2012) 3888–3903.
[93] L. Pulido, S.R. Rachala, M.E. Cabanela, Cementless acetabular revision: past, present, and future. Revision total hip arthroplasty: the acetabular side using cementless implants., Int. Orthop. 35 (2011) 289–298.