Tantalum as a Novel Biomaterial for Bone Implant: A Literature Review

Article Preview

Abstract:

Titanium (Ti) has been used in metallic implants since the 1950s due to various biocompatible and mechanical properties. However, due to its high Young’s modulus, it has been modified over the years in order to produce a better biomaterial. Tantalum (Ta) has recently emerged as a new potential biomaterial for bone and dental implants. It has been reported to have better corrosion resistance and osteo-regenerative properties as compared to Ti alloys which are most widely used in the bone-implant industry. Currently, Tantalum cannot be widely used yet due to its limited availability, high melting point, and high-cost production. This review paper discusses various manufacturing methods of Tantalum alloys, including conventional and additive manufacturing and also discusses their drawbacks and shortcomings. Recent research includes surface modification of various metals using Tantalum coatings in order to combine bulk material properties of different materials and the porous surface properties of Tantalum. Design modification also plays a crucial role in controlling bulk properties. The porous design does provide a lower density, wider surface area, and more immense specific strength. In addition to improved mechanical properties, a porous design could also escalate the material's biological and permeability properties. With current advancement in additive manufacturing technology, difficulties in processing Tantalum could be resolved. Therefore, Tantalum should be considered as a serious candidate material for future bone and dental implants.

You might also be interested in these eBooks

Info:

Pages:

55-65

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Javaid, A. Haleem, Additive manufacturing applications in orthopaedics: a review, J. Clin. Orthop. Trauma. 9 (2018) 202–206.

DOI: 10.1016/j.jcot.2018.04.008

Google Scholar

[2] J.L. Domingo, Vanadium and tungsten derivatives as antidiabetic agents, Biol. Trace Elem. Res. 88 (2002) 97–112.

Google Scholar

[3] S. Sehatzadeh, K. Kaulback, L. Levin, Metal-on-metal hip resurfacing arthroplasty: an analysis of safety and revision rates, Ont. Health Technol. Assess. Ser. 12 (2012) 1.

Google Scholar

[4] C. Betts, Benefits of metal foams and developments in modelling techniques to assess their materials behaviour: a review, Mater. Sci. Technol. 28 (2012) 129–143.

DOI: 10.1179/026708311x13135950699290

Google Scholar

[5] M. Yazdimamaghani, M. Razavi, D. Vashaee, K. Moharamzadeh, A.R. Boccaccini, L. Tayebi, Porous magnesium-based scaffolds for tissue engineering, Mater. Sci. Eng. C. 71 (2017) 1253–1266.

DOI: 10.1016/j.msec.2016.11.027

Google Scholar

[6] J. Fischer, D. Pröfrock, N. Hort, R. Willumeit, F. Feyerabend, Improved cytotoxicity testing of magnesium materials, Mater. Sci. Eng. B. 176 (2011) 830–834.

DOI: 10.1016/j.mseb.2011.04.008

Google Scholar

[7] K. Bobe, E. Willbold, I. Morgenthal, O. Andersen, T. Studnitzky, J. Nellesen, W. Tillmann, C. Vogt, K. Vano, F. Witte, In vitro and in vivo evaluation of biodegradable, open-porous scaffolds made of sintered magnesium W4 short fibres, Acta Biomater. 9 (2013) 8611–8623.

DOI: 10.1016/j.actbio.2013.03.035

Google Scholar

[8] P. Habibovic, H. Yuan, C.M. Van Der Valk, G. Meijer, C.A. van Blitterswijk, K. De Groot, 3D microenvironment as essential element for osteoinduction by biomaterials, Biomaterials. 26 (2005) 3565–3575.

DOI: 10.1016/j.biomaterials.2004.09.056

Google Scholar

[9] B. Otsuki, M. Takemoto, S. Fujibayashi, M. Neo, T. Kokubo, T. Nakamura, Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants, Biomaterials. 27 (2006) 5892–5900.

DOI: 10.1016/j.biomaterials.2006.08.013

Google Scholar

[10] D.M. Brunette, P. Tengvall, M. Textor, P. Thomse Titanium in Medicine, (2001).

Google Scholar

[11] R. Wauthle, J. Van Der Stok, S.A. Yavari, J. Van Humbeeck, J.-P. Kruth, A.A. Zadpoor, H. Weinans, M. Mulier, J. Schrooten, Additively manufactured porous tantalum implants, Acta Biomater. 14 (2015) 217–225.

DOI: 10.1016/j.actbio.2014.12.003

Google Scholar

[12] M. Mour, D. Das, T. Winkler, E. Hoenig, G. Mielke, M.M. Morlock, A.F. Schilling, Advances in porous biomaterials for dental and orthopaedic applications, Materials (Basel). 3 (2010) 2947–2974.

DOI: 10.3390/ma3052947

Google Scholar

[13] M. Niinomi, Mechanical biocompatibilities of titanium alloys for biomedical applications, J. Mech. Behav. Biomed. Mater. 1 (2008) 30–42.

Google Scholar

[14] S.M. Kurtz, J.N. Devine, PEEK biomaterials in trauma, orthopedic, and spinal implants, Biomaterials. 28 (2007) 4845–4869.

DOI: 10.1016/j.biomaterials.2007.07.013

Google Scholar

[15] J.D. Bobyn, G.J. Stackpool, S.A. Hacking, M. Tanzer, J.J. Krygier, Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial, J. Bone Joint Surg. Br. 81 (1999) 907–914.

DOI: 10.1302/0301-620x.81b5.0810907

Google Scholar

[16] H. Wang, J. Li, H. Yang, C. Liu, J. Ruan, Fabrication, characterization and in vitro biocompatibility evaluation of porous Ta–Nb alloy for bone tissue engineering, Mater. Sci. Eng. C. 40 (2014) 71–75.

DOI: 10.1016/j.msec.2014.03.031

Google Scholar

[17] N.P. Sheth, J.H. Lonner, Clinical use of porous tantalum in complex primary total knee arthroplasty, Am J Orthop (Belle Mead NJ). 38 (2009) 526–530.

Google Scholar

[18] S. Wu, X. Liu, K.W.K. Yeung, C. Liu, X. Yang, Biomimetic porous scaffolds for bone tissue engineering, Mater. Sci. Eng. R Reports. 80 (2014) 1–36.

DOI: 10.1016/j.mser.2014.04.001

Google Scholar

[19] X. Wei, D. Zhao, B. Wang, W. Wang, K. Kang, H. Xie, B. Liu, X. Zhang, J. Zhang, Z. Yang, Tantalum coating of porous carbon scaffold supplemented with autologous bone marrow stromal stem cells for bone regeneration in vitro and in vivo, Exp. Biol. Med. 241 (2016) 592–602.

DOI: 10.1177/1535370216629578

Google Scholar

[20] K. Hamaguchi, T. Tsuchiyama, J. Matsushita, Oxidation of Tantalum Nitride, Mater. Sci. Forum. 761 (2013) 125–129.

DOI: 10.4028/www.scientific.net/msf.761.125

Google Scholar

[21] J.-P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, Consolidation phenomena in laser and powder-bed based layered manufacturing, CIRP Ann. 56 (2007) 730–759.

DOI: 10.1016/j.cirp.2007.10.004

Google Scholar

[22] G. Campoli, M.S. Borleffs, S.A. Yavari, R. Wauthle, H. Weinans, A.A. Zadpoor, Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing, Mater. Des. 49 (2013) 957–965.

DOI: 10.1016/j.matdes.2013.01.071

Google Scholar

[23] S.M. Ahmadi, G. Campoli, S.A. Yavari, B. Sajadi, R. Wauthlé, J. Schrooten, H. Weinans, A.A. Zadpoor, Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells, J. Mech. Behav. Biomed. Mater. 34 (2014) 106–115.

DOI: 10.1016/j.jmbbm.2014.02.003

Google Scholar

[24] B.S. Bal, M.N. Rahaman, Orthopedic applications of silicon nitride ceramics, Acta Biomater. 8 (2012) 2889–2898.

DOI: 10.1016/j.actbio.2012.04.031

Google Scholar

[25] C.-C. Niu, J.-C. Liao, W.-J. Chen, L.-H. Chen, Outcomes of interbody fusion cages used in 1 and 2-levels anterior cervical discectomy and fusion: titanium cages versus polyetheretherketone (PEEK) cages, Clin. Spine Surg. 23 (2010) 310–316.

DOI: 10.1097/bsd.0b013e3181af3a84

Google Scholar

[26] A.L. Rosa, M.M. Beloti, Effect of cpTi surface roughness on human bone marrow cell attachment, proliferation, and differentiation, Braz. Dent. J. 14 (2003) 16–21.

DOI: 10.1590/s0103-64402003000100003

Google Scholar

[27] G. Lewis, Properties of open-cell porous metals and alloys for orthopaedic applications, J. Mater. Sci. Mater. Med. 24 (2013) 2293–2325.

DOI: 10.1007/s10856-013-4998-y

Google Scholar

[28] M. Niinomi, Metallic biomaterials, J. Artif. Organs. 11 (2008) 105–110.

Google Scholar

[29] V.K. Balla, S. Banerjee, S. Bose, A. Bandyopadhyay, Direct laser processing of a tantalum coating on titanium for bone replacement structures, Acta Biomater. 6 (2010) 2329–2334.

DOI: 10.1016/j.actbio.2009.11.021

Google Scholar

[30] M. Navarro, A. Michiardi, O. Castano, J.A. Planell, Biomaterials in orthopaedics, J. R. Soc. Interface. 5 (2008) 1137–1158.

DOI: 10.1098/rsif.2008.0151

Google Scholar

[31] T. Kokubo, H.-M. Kim, M. Kawashita, Novel bioactive materials with different mechanical properties, Biomaterials. 24 (2003) 2161–2175.

DOI: 10.1016/s0142-9612(03)00044-9

Google Scholar

[32] M.H. Uddin, T. Matsumoto, M. Okazaki, A. Nakahira, T. Sohmura, Biomimetic fabrication of apatite related biomaterials, Biomimetics Learn. from Nat. (2010) 63.

DOI: 10.5772/8777

Google Scholar

[33] K. Niespodziana, K. Jurczyk, M. Jurczyk, The synthesis of titanium alloys for biomedical applications, Rev. Adv. Mater. Sci. 18 (2008) 236–240.

Google Scholar

[34] S.G. Steinemann, Titanium—the material of choice?, Periodontol. 2000. 17 (1998) 7–21.

Google Scholar

[35] M. Niinomi, Recent metallic materials for biomedical applications, Metall. Mater. Trans. A. 33 (2002) 477–486.

DOI: 10.1007/s11661-002-0109-2

Google Scholar

[36] A.H. Yusop, A.A. Bakir, N.A. Shaharom, M.R. Abdul Kadir, H. Hermawan, Porous biodegradable metals for hard tissue scaffolds: a review, Int. J. Biomater. 2012 (2012).

DOI: 10.1155/2012/641430

Google Scholar

[37] F. Witte, H. Ulrich, M. Rudert, E. Willbold, Biodegradable magnesium scaffolds: Part 1: appropriate inflammatory response, J. Biomed. Mater. Res. Part A. 81 (2007) 748–756.

DOI: 10.1002/jbm.a.31170

Google Scholar

[38] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials. 26 (2005) 5474–5491.

DOI: 10.1016/j.biomaterials.2005.02.002

Google Scholar

[39] D.M. Yunos, O. Bretcanu, A.R. Boccaccini, Polymer-bioceramic composites for tissue engineering scaffolds, J. Mater. Sci. 43 (2008) 4433–4442.

DOI: 10.1007/s10853-008-2552-y

Google Scholar

[40] W.L. Murphy, R.G. Dennis, J.L. Kileny, D.J. Mooney, Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds, Tissue Eng. 8 (2002) 43–52.

DOI: 10.1089/107632702753503045

Google Scholar

[41] G. Bouet, D. Marchat, M. Cruel, L. Malaval, L. Vico, In vitro three-dimensional bone tissue models: from cells to controlled and dynamic environment., Tissue Eng. Part B. Rev. 21 (2015) 133–156.

DOI: 10.1089/ten.teb.2013.0682

Google Scholar

[42] J. Black, Biologic performance of tantalum, Clin. Mater. 16 (1994) 167–173.

Google Scholar

[43] D.M. Findlay, K. Welldon, G.J. Atkins, D.W. Howie, A.C.W. Zannettino, D. Bobyn, The proliferation and phenotypic expression of human osteoblasts on tantalum metal, Biomaterials. 25 (2004) 2215–2227.

DOI: 10.1016/j.biomaterials.2003.09.005

Google Scholar

[44] J.A. Helsen, Y. Missirlis, Biomaterials: a Tantalus experience, Springer Science & Business Media, (2010).

Google Scholar

[45] H. Matsuno, A. Yokoyama, F. Watari, M. Uo, T. Kawasaki, Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium., Biomaterials. 22 (2001) 1253–1262.

DOI: 10.1016/s0142-9612(00)00275-1

Google Scholar

[46] C.B. Johansson, H.A. Hansson, T. Albrektsson, Qualitative interfacial study between bone and tantalum, niobium or commercially pure titanium, Biomaterials. 11 (1990) 277–280.

DOI: 10.1016/0142-9612(90)90010-n

Google Scholar

[47] B.R. Levine, S. Sporer, R.A. Poggie, C.J. Della Valle, J.J. Jacobs, Experimental and clinical performance of porous tantalum in orthopedic surgery, Biomaterials. 27 (2006) 4671–4681.

DOI: 10.1016/j.biomaterials.2006.04.041

Google Scholar

[48] J.D. Bobyn, K.-K. Toh, S.A. Hacking, M. Tanzer, J.J. Krygier, Tissue response to porous tantalum acetabular cups: a canine model, J. Arthroplasty. 14 (1999) 347–354.

DOI: 10.1016/s0883-5403(99)90062-1

Google Scholar

[49] J.D. Bobyn, R.A. Poggie, J.J. Krygier, D.G. Lewallen, A.D. Hanssen, R.J. Lewis, A.S. Unger, T.J. O'keefe, M.J. Christie, S. Nasser, Clinical validation of a structural porous tantalum biomaterial for adult reconstruction, JBJS. 86 (2004) 123–129.

DOI: 10.2106/00004623-200412002-00017

Google Scholar

[50] S.J. Li, R. Yang, S. Li, Y.L. Hao, Y.Y. Cui, M. Niinomi, Z.X. Guo, Wear characteristics of Ti–Nb–Ta–Zr and Ti–6Al–4V alloys for biomedical applications, Wear. 257 (2004) 869–876.

DOI: 10.1016/j.wear.2004.04.001

Google Scholar

[51] M. Tane, S. Akita, T. Nakano, K. Hagihara, Y. Umakoshi, M. Niinomi, H. Nakajima, Peculiar elastic behavior of Ti–Nb–Ta–Zr single crystals, Acta Mater. 56 (2008) 2856–2863.

DOI: 10.1016/j.actamat.2008.02.017

Google Scholar

[52] R.Z. Valiev, R.K. Islamgaliev, I. V Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103–189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[53] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process, Acta Mater. 47 (1999) 579–583.

DOI: 10.1016/s1359-6454(98)00365-6

Google Scholar

[54] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893–979.

DOI: 10.1016/j.pmatsci.2008.03.002

Google Scholar

[55] M. Niinomi, H. Fukui, T. Hattori, K. Kyo, A. Suzuki, Development of high biocompatible titanium alloy, Mater. Japan(Japan). 41 (2002) 221–223.

Google Scholar

[56] H. Yilmazer, M. Niinomi, T. Akahori, M. Nakai, H. Tsutsumi, Effect of severe plastic deformation and thermo-mechanical treatments on microstructures and mechanical properties of β-type titanium alloys for biomedical applications, (2009).

DOI: 10.4028/www.scientific.net/kem.508.152

Google Scholar

[57] H. Yilmazer, M. Niinomi, M. Nakai, K. Cho, J. Hieda, Y. Todaka, T. Miyazaki, Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion, Mater. Sci. Eng. C, Biomim. Mater. Sensors Syst. 33 (n.d.) 2499–2507.

DOI: 10.1016/j.msec.2013.01.056

Google Scholar

[58] X. Song, M. Niinomi, M. Nakai, H. Tsutsumi, L. Wang, Improvement in fatigue strength while keeping low Young's modulus of a β-type titanium alloy through yttrium oxide dispersion, Mater. Sci. Eng. C. 32 (2012) 542–549.

DOI: 10.1016/j.msec.2011.12.007

Google Scholar

[59] M. Niinomi, M. Nakai, S. Yonezawa, X. Song, L. Wang, Effect of TiB2 or Y2O3 Additions on Mechanical Biofunctionality of Ti-29Nb-13Ta-4.6Zr for Biomedical Applications, Ceram. Trans. 228 (2011) 75–81.

DOI: 10.1002/9781118144565.ch8

Google Scholar

[60] M. Niinomi, M. Nakai, Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone, Int. J. Biomater. 2011 (2011) 836587.

DOI: 10.1155/2011/836587

Google Scholar

[61] N. Sumitomo, K. Noritake, T. Hattori, K. Morikawa, S. Niwa, K. Sato, M. Niinomi, Experiment study on fracture fixation with low rigidity titanium alloy: plate fixation of tibia fracture model in rabbit., J. Mater. Sci. Mater. Med. 19 (2008) 1581–1586.

DOI: 10.1007/s10856-008-3372-y

Google Scholar

[62] S. Minagar, C.C. Berndt, J. Wang, E. Ivanova, C. Wen, A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces, Acta Biomater. 8 (2012) 2875–2888.

DOI: 10.1016/j.actbio.2012.04.005

Google Scholar

[63] H. Nakada, Y. Numata, T. Sakae, Y. Okazaki, Y. Tanimoto, H. Tamaki, T. Katou, A. Ookubo, K. Kobayashi, R. LeGeros, Comparison of Bone Mineral Density and Area of Newly Formed Bone Around Ti15%Zr4%Nb4%Ta Alloy and Ti6%Al4%V Alloy Implants, J. Hard Tissue Biol. - J HARD TISSUE BIOL. 17 (2008) 99–108.

DOI: 10.2485/jhtb.17.99

Google Scholar

[64] C. Arnould, J. Delhalle, Z. Mekhalif, Multifunctional hybrid coating on titanium towards hydroxyapatite growth: Electrodeposition of tantalum and its molecular functionalization with organophosphonic acids films, Electrochim. Acta. 53 (2008) 5632–5638.

DOI: 10.1016/j.electacta.2008.03.003

Google Scholar

[65] C. Arnould, C. Volcke, C. Lamarque, P.A. Thiry, J. Delhalle, Z. Mekhalif, Titanium modified with layer-by-layer sol-gel tantalum oxide and an organodiphosphonic acid: a coating for hydroxyapatite growth., J. Colloid Interface Sci. 336 (2009) 497–503.

DOI: 10.1016/j.jcis.2009.03.092

Google Scholar

[66] V.K. Balla, P.D. DeVasConCellos, W. Xue, S. Bose, A. Bandyopadhyay, Fabrication of compositionally and structurally graded Ti–TiO2 structures using laser engineered net shaping (LENS), Acta Biomater. 5 (2009) 1831–1837.

DOI: 10.1016/j.actbio.2009.01.011

Google Scholar

[67] B. Vamsi Krishna, W. Xue, S. Bose, A. Bandyopadhyay, Engineered porous metals for implants, JOM. 60 (2008) 45–48.

DOI: 10.1007/s11837-008-0059-2

Google Scholar

[68] A. Bandyopadhyay, B. V Krishna, W. Xue, S. Bose, Application of Laser Engineered Net Shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants, J. Mater. Sci. Mater. Med. 20 (2008) 29.

DOI: 10.1007/s10856-008-3478-2

Google Scholar

[69] B. Vamsi Krishna, W. Xue, S. Bose, A. Bandyopadhyay, Functionally graded Co–Cr–Mo coating on Ti–6Al–4V alloy structures, Acta Biomater. 4 (2008) 697–706.

DOI: 10.1016/j.actbio.2007.10.005

Google Scholar

[70] M. Roy, B. Vamsi Krishna, A. Bandyopadhyay, S. Bose, Laser processing of bioactive tricalcium phosphate coating on titanium for load-bearing implants, Acta Biomater. 4 (2008) 324–333.

DOI: 10.1016/j.actbio.2007.09.008

Google Scholar

[71] B.V. Krishna, S. Bose, A. Bandyopadhyay, Low stiffness porous Ti structures for load-bearing implants, Acta Biomater. 3 (2007) 997–1006.

DOI: 10.1016/j.actbio.2007.03.008

Google Scholar

[72] B.V. Krishna, S. Bose, A. Bandyopadhyay, Laser Processing of Net-Shape NiTi Shape Memory Alloy, Metall. Mater. Trans. A. 38 (2007) 1096–1103.

DOI: 10.1007/s11661-007-9127-4

Google Scholar

[73] W. Xue, B.V. Krishna, A. Bandyopadhyay, S. Bose, Processing and biocompatibility evaluation of laser processed porous titanium, Acta Biomater. 3 (2007) 1007–1018.

DOI: 10.1016/j.actbio.2007.05.009

Google Scholar

[74] V.K. Balla, W. Xue, S. Bose, A. Bandyopadhyay, Laser-assisted Zr/ZrO2 coating on Ti for load-bearing implants, Acta Biomater. 5 (2009) 2800–2809.

DOI: 10.1016/j.actbio.2009.03.032

Google Scholar

[75] K. Webb, V. Hlady, P.A. Tresco, Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization., J. Biomed. Mater. Res. 41 (1998) 422–430.

DOI: 10.1002/(sici)1097-4636(19980905)41:3<422::aid-jbm12>3.0.co;2-k

Google Scholar

[76] Y.M. Zhang, P. Bataillon-Linez, P. Huang, Y.M. Zhao, Y. Han, M. Traisnel, K.W. Xu, H.F. Hildebrand, Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior., J. Biomed. Mater. Res. A. 68 (2004) 383–391.

DOI: 10.1002/jbm.a.20063

Google Scholar

[77] S.A. Redey, M. Nardin, D. Bernache-Assolant, C. Rey, P. Delannoy, L. Sedel, P.J. Marie, Behavior of human osteoblastic cells on stoichiometric hydroxyapatite and type A carbonate apatite: role of surface energy., J. Biomed. Mater. Res. 50 (2000) 353–364.

DOI: 10.1002/(sici)1097-4636(20000605)50:3<353::aid-jbm9>3.0.co;2-c

Google Scholar

[78] K. Das, S. Bose, A. Bandyopadhyay, Surface modifications and cell–materials interactions with anodized Ti, Acta Biomater. 3 (2007) 573–585.

DOI: 10.1016/j.actbio.2006.12.003

Google Scholar

[79] S. Myllymaa, E. Kaivosoja, K. Myllymaa, T. Sillat, H. Korhonen, R. Lappalainen, Y.T. Konttinen, Adhesion, spreading and osteogenic differentiation of mesenchymal stem cells cultured on micropatterned amorphous diamond, titanium, tantalum and chromium coatings on silicon., J. Mater. Sci. Mater. Med. 21 (2010) 329–341.

DOI: 10.1007/s10856-009-3836-8

Google Scholar

[80] L. V Gulotta, D. Wiznia, M. Cunningham, L. Fortier, S. Maher, S.A. Rodeo, What's new in orthopaedic research., J. Bone Joint Surg. Am. 93 (2011) 2136–2141.

DOI: 10.2106/jbjs.k.00981

Google Scholar

[81] V.P. Mantripragada, B. Lecka-Czernik, N.A. Ebraheim, A.C. Jayasuriya, An overview of recent advances in designing orthopedic and craniofacial implants., J. Biomed. Mater. Res. A. 101 (2013) 3349–3364.

DOI: 10.1002/jbm.a.34605

Google Scholar

[82] R.D. Russell, K.A. Estrera, R. Pivec, M.A. Mont, M.H. Huo, What's new in total hip arthroplasty., J. Bone Joint Surg. Am. 95 (2013) 1719–1725.

DOI: 10.2106/jbjs.m.00764

Google Scholar

[83] B. Levine, C.J. Della Valle, J.J. Jacobs, Applications of porous tantalum in total hip arthroplasty., J. Am. Acad. Orthop. Surg. 14 (2006) 646–655.

DOI: 10.5435/00124635-200611000-00008

Google Scholar

[84] B. Levine, A New Era in Porous Metals: Applications in Orthopaedics, Adv. Eng. Mater. 10 (2008) 788–792.

DOI: 10.1002/adem.200800215

Google Scholar

[85] R.O. Ritchie, Mechanisms of fatigue-crack propagation in ductile and brittle solids, Int. J. Fract. 100 (1999) 55–83.

Google Scholar

[86] R. Huiskes, R. Ruimerman, G.H. van Lenthe, J.D. Janssen, Effects of mechanical forces on maintenance and adaptation of form in trabecular bone., Nature. 405 (2000) 704–706.

DOI: 10.1038/35015116

Google Scholar

[87] W.G. Paprosky, P.G. Perona, J.M. Lawrence, Acetabular defect classification and surgical reconstruction in revision arthroplasty. A 6-year follow-up evaluation., J. Arthroplasty. 9 (1994) 33–44.

DOI: 10.1016/0883-5403(94)90135-x

Google Scholar

[88] R.M. Meneghini, C. Meyer, C.A. Buckley, A.D. Hanssen, D.G. Lewallen, Mechanical stability of novel highly porous metal acetabular components in revision total hip arthroplasty., J. Arthroplasty. 25 (2010) 337–341.

DOI: 10.1016/j.arth.2009.03.003

Google Scholar

[89] M. Fernández-Fairen, A. Murcia, A. Blanco, A. Meroño, A.J. Murcia, J. Ballester, Revision of failed total hip arthroplasty acetabular cups to porous tantalum components: a 5-year follow-up study., J. Arthroplasty. 25 (2010) 865–872.

DOI: 10.1016/j.arth.2009.07.027

Google Scholar

[90] P.J. Rao, M.H. Pelletier, W.R. Walsh, R.J. Mobbs, Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration., Orthop. Surg. 6 (2014) 81–89.

DOI: 10.1111/os.12098

Google Scholar

[91] S. Fujimoto, V. Raman, H. Tsuchiya, Surface modification of β-Type titanium alloy by electrochemical potential pulse polarization, J. Phys. Conf. Ser. 165 (2009) 12007.

DOI: 10.1088/1742-6596/165/1/012007

Google Scholar

[92] M. Niinomi, M. Nakai, J. Hieda, Development of new metallic alloys for biomedical applications, Acta Biomater. 8 (2012) 3888–3903.

DOI: 10.1016/j.actbio.2012.06.037

Google Scholar

[93] L. Pulido, S.R. Rachala, M.E. Cabanela, Cementless acetabular revision: past, present, and future. Revision total hip arthroplasty: the acetabular side using cementless implants., Int. Orthop. 35 (2011) 289–298.

DOI: 10.1007/s00264-010-1198-y

Google Scholar