[1]
Tonetti MS, Jepsen S, Jin L, et al. Impact of the global burden of periodontal diseases on health, nutrition, and wellbeing of mankind: A call for global action. J Clin Periodontol (2017) 44: 456–462.
DOI: 10.1111/jcpe.12732
Google Scholar
[2]
Shewale AH, Gattani DR, Bhatia N, et al. Prevalence of periodontal disease in the general population of India-A systematic review. J Clin Diagnostic Res (2016) 10: ZE04–ZE09.
Google Scholar
[3]
Graves DT, Li J, Cochran DL. Inflammation and uncoupling as mechanisms of periodontal bone loss. Crit Rev Oral Biol Med (2011) 90: 143–153.
DOI: 10.1177/0022034510385236
Google Scholar
[4]
Intini G, Katsuragi Y, Kirkwood KL, et al. Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions. Adv Dent Res (2014) 26: 38–46.
DOI: 10.1177/0022034514529305
Google Scholar
[5]
Chahboun H, Arnau MM, Herrera D, et al. Bacterial profile of aggressive periodontitis in Morocco: a cross-sectional study. BMC Oral Health (2015) 15: 25.
DOI: 10.1186/s12903-015-0006-x
Google Scholar
[6]
Sun H, Yang HL. Calcium phosphate scaffolds combined with bone morphogenetic proteins or mesenchymal stem cells in bone tissue engineering. Chin Med J (Engl) (2015) 128: 1121–1127.
DOI: 10.4103/0366-6999.155121
Google Scholar
[7]
Abdel Meguid E, Ke Y, Ji J, et al. Stem cells applications in bone and tooth repair and regeneration: New insights, tools, and hopes. J Cell Physiol (2018) 233: 1825–1835.
DOI: 10.1002/jcp.25940
Google Scholar
[8]
Requicha JF, Viegas CA, Muñoz F, et al. A Tissue Engineering Approach for Periodontal Regeneration Based on a Biodegradable Double-Layer Scaffold and Adipose-Derived Stem Cells. Tissue Eng Part A (2014) 20: 2483–2492.
DOI: 10.1089/ten.tea.2013.0360
Google Scholar
[9]
Teruel; Dios J De, Alcolea A, Hernandez A, et al. Comparison of chemical composition of enamel and dentine in human , bovine , porcine and ovine teeth. Arch Oral Biol (2015) 60: 768–775.
DOI: 10.1016/j.archoralbio.2015.01.014
Google Scholar
[10]
Abou Neel EA, Chrzanowski W, Salih VM, et al. Tissue engineering in dentistry. J Dent (2014) 42: 915–928.
DOI: 10.1016/j.jdent.2014.05.008
Google Scholar
[11]
Yassen GH, Platt JA, Hara AT. Bovine teeth as substitute for human teeth in dental research : a review of literature. J Oral Sci (2011) 53: 273–282.
DOI: 10.2334/josnusd.53.273
Google Scholar
[12]
Sari DS, Setiawatie EM, Mahyudin F, et al. Cytotoxicity test and characteristics of demineralized dentin matrix scaffolds in adipose-derived mesenchymal stem cells of rats. Dent J (2018) 194: 194–199.
DOI: 10.20473/j.djmkg.v51.i4.p194-199
Google Scholar
[13]
Bartoš M, Suchý T, Tonar Z, et al. Micro-CT in tissue engineering scaffolds designed for bone regeneration: Principles and application. Ceram - Silikaty (2018) 62: 194–199.
DOI: 10.13168/cs.2018.0012
Google Scholar
[14]
Bishop ES, Mostafa S, Pakvasa M, et al. 3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends. Genes Dis (2017) 4: 185–195.
DOI: 10.1016/j.gendis.2017.10.002
Google Scholar
[15]
Cengiz IF, Oliveira JM, Reis RL. Micro-CT - A digital 3D microstructural voyage into scaffolds: A systematic review of the reported methods and results. Biomater Res (2018) 22: 1–11.
DOI: 10.1186/s40824-018-0136-8
Google Scholar
[16]
Latief, , D E, Sari DS, Fitri L. Applications of Micro-CT scanning in medicine and dentistry : Microstructural analyses of a Wistar Rat mandible and a urinary tract stone Applications of Micro-CT scanning in medicine and dentistry : Microstructural analyses of a Wistar Rat mandible and a. J Phys Conf Ser (2017) 884: 0–11.
DOI: 10.1088/1742-6596/884/1/012042
Google Scholar
[17]
Um I-W, Kim Y-K, Mitsugi M. Demineralized dentin matrix scaffolds for alveolar bone engineering. J Indian Prosthodont Soc (2017) 17: 120–127.
DOI: 10.4103/jips.jips_62_17
Google Scholar
[18]
Sari DS, Maduratna E, Ferdiansyah, et al. Osteogenic Differentiation and Biocompatibility of Bovine Teeth Scaffold with Rat Adipose-derived Mesenchymal Stem Cells. Eur J Dent (2019) 13: 206–212.
DOI: 10.1055/s-0039-1694305
Google Scholar
[19]
Xing H, Taguchi Y, Komasa S, et al. Effect of Porphyromonas gingivalis Lipopolysaccharide on Bone Marrow Mesenchymal Stem Cell Osteogenesis on a Titanium Nanosurface. J Periodontol (2015) 86: 448–455.
DOI: 10.1902/jop.2014.140386
Google Scholar
[20]
Struillou X, Boutigny H, Soueidan A, et al. Experimental animal models in periodontology: a review. Open Dent J (2010) 4: 37–47.
DOI: 10.2174/1874210601004010037
Google Scholar
[21]
Tayman MA, Kamburoğlu K, Küçük Ö, et al. Comparison of linear and volumetric measurements obtained from periodontal defects by using cone beam-CT and micro-CT: an in vitro study. Clin Oral Investig (2019) 23: 2235–2244.
DOI: 10.1007/s00784-018-2665-x
Google Scholar
[22]
Radetic T. Fundamentals of scanning electron microscopy and energy dispersive X-ray analysis in SEM and TEM. NFMC Spring School on Electron Microscopy (2011):1-52.
Google Scholar
[23]
Furfaro F, Ang ESM, Lareu RR, et al. A histological and micro-CT investigation in to the effect of NGF and EGF on the periodontal, alveolar bone, root and pulpal healing of replanted molars in a rat model - a pilot study. Prog Orthod (2014) 15: 1–12.
DOI: 10.1186/2196-1042-15-2
Google Scholar
[24]
Park HJ, Min KD, Lee MC, et al. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. J Biomed Mater Res - Part A (2016) 104: 1779–1787.
DOI: 10.1002/jbm.a.35711
Google Scholar
[25]
Park JY, Chung JH, Lee JS, et al. Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: An ex vivo study. J Periodontal Implant Sci (2017) 47: 30–40.
DOI: 10.5051/jpis.2017.47.1.30
Google Scholar
[26]
Boerckel JD, Mason DE, McDermott AM, et al. Microcomputed tomography: Approaches and applications in bioengineering. Stem Cell Res Ther (2014) 5: 1–12.
DOI: 10.1186/scrt534
Google Scholar
[27]
Michel J, Penna M, Kochen J, et al. Recent Advances in Hydroxyapatite Scaffolds Containing Mesenchymal Stem Cells. Stem Cells Int (2015) 2015: 1–13.
DOI: 10.1155/2015/305217
Google Scholar
[28]
Kim Y, Lee J, Um I, et al. Tooth-derived bone graft material. J Korean Assoc Oral Maxillofac Surg (2013) 39: 103–111.
DOI: 10.5125/jkaoms.2013.39.3.103
Google Scholar
[29]
Koga T, Minamizato T, Kawai Y, et al. Bone Regeneration Using Dentin Matrix Depends on the Degree of Demineralization and Particle Size. PLOS one (2016) 1–12.
DOI: 10.1371/journal.pone.0147235
Google Scholar
[30]
Thitiset T, Damrongsakkul S, Bunaprasert T, et al. Development of Collagen/Demineralized Bone Powder Scaffolds and Periosteum-Derived Cells for Bone Tissue Engineering Application. Int J Mol Sci (2013) 14: 2056–(2071).
DOI: 10.3390/ijms14012056
Google Scholar
[31]
Supronowicz P, Gill E, Trujillo A, et al. Human Adipose-Derived Side Population Stem Cells Cultured on Demineralized Bone Matrix for Bone Tissue Engineering. Tissue Eng Part A (2011) 17: 789–798.
DOI: 10.1089/ten.tea.2010.0357
Google Scholar
[32]
Yamanaka K, Yamamoto K, Sakai Y, et al. seeding of mesenchymal stem cells into inner part of interconnected porous biodegradable scaffold by a new method with a filter paper. Dent Mater J (2015) 34: 78–85.
DOI: 10.4012/dmj.2013-330
Google Scholar
[33]
Oliveira GS De, Miziara MN, Silva ER, et al. Enhanced bone formation during healing process of tooth sockets fi lled with demineralized human dentine matrix. Aust Dent J (2013) 58: 326–332.
DOI: 10.1111/adj.12088
Google Scholar
[34]
Wahyukundari MA, Sari DS, Pujiastuti P, et al. Virulence Comparison Between Aggregatibacter Actinomycetemcomitans and Porphyromonas Gingivalis : Micro-Computed Tomography ( μ -CT ) and Inflamatory Cytokines Analysis. 11th International Dentistry Scientific Meeting (2017): 312-321.
DOI: 10.2991/idsm-17.2018.42
Google Scholar
[35]
Wu S, Wang J, Zou L, et al. A three-dimensional hydroxyapatite/polyacrylonitrile composite scaffold designed for bone tissue engineering. RSC Adv (2018) 8: 1730–1736.
DOI: 10.1039/c7ra12449j
Google Scholar
[36]
Turnbull G, Clarke J, Picard F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials (2018) 3: 278–314.
DOI: 10.1016/j.bioactmat.2017.10.001
Google Scholar
[37]
Prins HJ, Braat AK, Gawlitta D, et al. In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells. Stem Cell Res (2014) 12: 428–440.
DOI: 10.1016/j.scr.2013.12.001
Google Scholar
[38]
Tollemar V, Collier ZJ, Mohammed MK, et al. Stem cells, growth factors and scaffolds in craniofacial regenerative medicine. Genes Dis (2015) xx: 1–16.
DOI: 10.1016/j.gendis.2015.09.004
Google Scholar
[39]
Nampo T, Watahiki J, Enomoto A, et al. A New Method for Alveolar Bone Repair. J Periodontol (2010) 81: 1264–1272.
Google Scholar
[40]
Duan X, Lin Z, Lin X, et al. Study of platelet-rich fibrin combined with rat periodontal ligament stem cells in periodontal tissue regeneration. J Cell Mol Med (2018) 22: 1047–1055.
Google Scholar
[41]
Akita D, Kano K, Saito-Tamura Y, et al. Use of rat mature adipocyte-derived dedifferentiated fat cells as a cell source for periodontal tissue regeneration. Front Physiol (2016) 7: 1–12.
DOI: 10.3389/fphys.2016.00050
Google Scholar