[1]
M. Faatih, Riset Kolaboratif untuk Kemandirian Produk Alat Kesehatan: Need Assessment dan Prioritisasi Pengembangan Alat Kesehatan Dalam Negeri,, Puslitbang Sumber Daya dan Pelayanan Kesehatan Badan Penelitian dan Pengembangan Kesehatan Kementerian Kesehatan RI 2019. (2019).
DOI: 10.14203/press.298
Google Scholar
[2]
M. Nashrullah, B. Clara Shinta, M. I. P. Hidayat, A. Purniawan, and Y. Setiyorini, Effect of Screw Diameter in Femoral Fracture Fixation Modeled by Finite Element Method,, IPTEK J. Proc. Ser., vol. 0, no. 2, p.173, (2017).
DOI: 10.12962/j23546026.y2017i2.2336
Google Scholar
[3]
J. Khotib, C. S. Lasandara, S. Samirah, and A. S. Budiatin, Acceleration of Bone Fracture Healing through the Use of Natural Bovine Hydroxyapatite Implant on Bone Defect Animal Model,, Folia Medica Indones., vol. 55, no. 3, p.176, (2019).
DOI: 10.20473/fmi.v55i3.15495
Google Scholar
[4]
P. W. Laksono, M. Mahardika, Suyitno, and P. Dewo, Surface characteristics of indonesian cortical bone screw,, Adv. Mater. Res., vol. 893, p.349–352, (2014).
DOI: 10.4028/www.scientific.net/amr.893.349
Google Scholar
[5]
A. E. Tontowi, P. Ikra, and W. Siswomihardjo, Mapping of coronary stent demand of several hospitals in Indonesia and its forecasting,, Proc. 2013 3rd Int. Conf. Instrumentation, Commun. Inf. Technol., Biomed. Eng. Sci. Technol. Improv. Heal. Safety, Environ., ICICI-BME 2013, vol. 1, no. 1, p.436–439, (2013).
DOI: 10.1109/icici-bme.2013.6698542
Google Scholar
[6]
I. Nurisusilawati and M. Yusro, Prosthesis Mapping and Forecasting as a Direction of Innovation in Prosthesis Product Development Number of Prosthesis Use in the Last 3 Years,, J. Optimasi Sist. Ind., vol. 14, no. 1, p.30–37, 2021, [Online]. Available: http://jurnal.upnyk.ac.id/index.php/opsi/article/view/4579/3589.
DOI: 10.31315/opsi.v14i1.4579
Google Scholar
[7]
P. Parekh and V. Ghariya, Analysis of Moving Average Methods,, Int. J. Eng. Tech. Res., vol. 3, no. 1, p.178–179, (2015).
Google Scholar
[8]
M. V. Makridakis S, Wheelwright SC, Forecasting: Methods and Applications, 2nd ed, Second Edi. John WIley and Sons, (1983).
Google Scholar
[9]
J. Mckenzie, Mean absolute percentage error and bias in economic forecasting,, Econ. Lett., vol. 113, no. 3, p.259–262, (2011).
DOI: 10.1016/j.econlet.2011.08.010
Google Scholar
[10]
B. Nepal, M. Natarajarathinam, and K. Balla, Improving manufacturing process for biomedical products: A case study,, J. Manuf. Technol. Manag., vol. 22, no. 4, p.527–540, (2011).
DOI: 10.1108/17410381111126436
Google Scholar
[11]
Badan Penelitian dan Pengembangan Kesehatan, Laporan Nasional RISKESDAS 2018,, Badan Penelitian dan Pengembangan Kesehatan. p.198, 2018, [Online]. Available: http://labdata.litbang.kemkes.go.id/images/download/laporan/RKD/2018/Laporan_Nasional_RKD2018_FINAL.pdf.
DOI: 10.14203/press.298
Google Scholar
[12]
R. M. Slone, M. M. Heare, R. A. Vander Griend, and W. J. Montgomery, Orthopedic fixation devices.,, Radiographics, vol. 11, no. 5, p.823–847, (1991).
DOI: 10.1148/radiographics.11.5.1947319
Google Scholar
[13]
F. Mahyudin and H. Hermawan, Biomaterials and Medical Devices,, Adv. Struct. Mater., p.161–181, (2016).
Google Scholar
[14]
S. N. Kane, A. Mishra, and A. K. Dutta, Development of the Gliding Hole of the Dynamics Compression Plate,, J. Phys. Conf. Ser., vol. 755, no. 1, (2016).
Google Scholar
[15]
V. Giordano et al., Non-locked and locked small fragment straight plates have a similar behavior in buttressing the posteromedial shear tibial plateau fragment: a biomechanical analysis of three different fixations,, J. Exp. Orthop., vol. 7, no. 1, (2020).
DOI: 10.1186/s40634-020-0218-0
Google Scholar
[16]
M. E. Lynch and M. C. H. Van Der Meulen, Mechanical Properties of Bone Tissue,, Biomech. Dent. Implant. Handb. Res., p.1–20, (2012).
Google Scholar
[17]
C. N. Elias, J. H. C. Lima, R. Valiev, and M. A. Meyers, Biomedical applications of titanium and its alloys,, Jom, vol. 60, no. 3, p.46–49, (2008).
DOI: 10.1007/s11837-008-0031-1
Google Scholar
[18]
H. A. Zaman, S. Sharif, M. H. Idris, and A. Kamarudin, Metallic Biomaterials for Medical Implant Applications: A Review,, Appl. Mech. Mater., vol. 735, p.19–25, (2015).
DOI: 10.4028/www.scientific.net/amm.735.19
Google Scholar
[19]
I. Putrantyo, N. Anilbhai, R. Vanjani, and B. De Vega, Tantalum as a Novel Biomaterial for Bone Implant: A Literature Review,, J. Biomimetics, Biomater. Biomed. Eng., vol. 52, no. August, p.55–65, (2021).
DOI: 10.4028/www.scientific.net/jbbbe.52.55
Google Scholar
[20]
F. Qulub, P. Widiyanti, and J. Ady, Synthesis and characterization of composite poly(1.8 octanediol Co-Citrate) (POC)/nano-hydroxyapatite as candidate biodegradable bone screw,, J. Biomimetics, Biomater. Biomed. Eng., vol. 27, p.36–43, (2016).
DOI: 10.4028/www.scientific.net/jbbbe.27.36
Google Scholar
[21]
I. N. Jujur, J. Sah, A. Bakri, and A. H. S. Wargadipura, Analysis of oxide inclusions on medical grade 316L stainless steel using local raw,, Int. J. Technol., vol. 6, no. 7, p.1184–1190, (2015).
DOI: 10.14716/ijtech.v6i7.1263
Google Scholar
[22]
W. Jin and P. K. Chu, Orthopedic implants,, in Encyclopedia of Biomedical Engineering, vol. 1–3, R. Narayan, Ed. Elsevier Inc., 2019, p.425–439.
Google Scholar
[23]
M. N. A. Aziz, Rusnaldy, P. Munyensanga, S. A. Widyanto, and Paryanto, Application of lost wax casting for manufacturing of orthopedic screw: A review,, Procedia CIRP, vol. 78, p.149–154, (2018).
DOI: 10.1016/j.procir.2018.08.304
Google Scholar
[24]
K. A. Irianto, M. Edward, and A. Fiandana, K-wire migration to unexpected site,, Int. J. Surg. Open, vol. 11, p.18–21, (2018).
DOI: 10.1016/j.ijso.2018.04.003
Google Scholar
[25]
O. Kayıran and A. D. Kara, What To Do For the Exposed End of a K-Wire?,, Medeni. Med. J., vol. 30, no. 3, p.110–113, (2015).
Google Scholar