Baby Incubator Monitoring Center Using Wi-Fi Network for Data Transmission

Article Preview

Abstract:

Premature babies born before 38 weeks have a high risk of dying, requiring urgent care. Premature babies receiving intensive care in incubators need certain temperature, humidity, and a quiet room. In addition, the baby should also be ensured that his body temperature remains normal during the treatment period. Based on the condition of these vulnerable babies, it is very necessary to have a temperature monitoring system in the incubator. Therefore, the purpose of this research is to develop a baby incubator monitoring system that still uses the manual method to make it faster, easier, and more practical. This module is a tool that works independently and is not part of the baby incubator. Therefore, any brand of the incubator can be monitored using this module. The system in this module is wireless and uses a Wi-Fi network for data transmission. By using several ESP32 modules assembled into a central system, the data obtained from monitoring each sensor will be processed by the ESP32 which functions as a client, and collected at the central point of the ESP32 which functions as a server using the internal wifi network of the ESP32 itself as data transmission. The data from the server will subsequently be shown on the TFT Nextion display. Based on the overall measurement results using 2 baby incubators, the highest error values ​​were 1.387% for the incubator temperature parameter, 3.911% for the skin temperature parameter, 10.5% for the humidity parameter, and 25.692% for the noise parameter. The results showed that the module that was made still contained errors in each measurement. The results of this study will assist nurses in more simply and swiftly monitoring premature newborns.

You might also be interested in these eBooks

Info:

Pages:

275-287

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. N. Azkiyak, S. Syaifudin, and D. Titisari, Incubator Analyzer Using Bluetooth Android Display (Humidity & Air Flow), Indones. J. Electron. Electromed. Eng. Med. informatics, vol. 1, no. 2, p.71–77, (2020).

DOI: 10.35882/ijeeemi.v1i2.5

Google Scholar

[2] R. Antonucci, A. Porcella, and V. Fanos, The infant incubator in the neonatal intensive care unit: Unresolved issues and future developments, J. Perinat. Med., vol. 37, no. 6, p.587–598, (2009).

DOI: 10.1515/jpm.2009.109

Google Scholar

[3] M. Koli, P. Ladge, B. Prasad, R. Boria, and N. J. Balur, Intelligent Baby Incubator, Proc. 2nd Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2018, no. Iceca, p.1036–1042, (2018).

DOI: 10.1109/iceca.2018.8474763

Google Scholar

[4] N. Azman, I. T. Anggraini, S. R. Wicaksono, and F. Djauhari, Design of temperature and humidity monitoring baby incubator based on internet of things, Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 5, p.8390–8396, (2020).

DOI: 10.30534/ijatcse/2020/213952020

Google Scholar

[5] M. Suruthi and S. Suma, Microcontroller Based Baby Incubator Using Sensors, Int. J. Innov. Res. Sci. Eng. Technol., vol. 4, no. 12, p.12037–12044, (2015).

Google Scholar

[6] C. Leung, Born too soon, Neuroendocrinol. Lett., vol. 25, no. SUPPL. 1, p.133–136, (2004).

Google Scholar

[7] A. Rajalakshmi, K. A. Sunitha, and R. Venkataraman, A survey on neonatal incubator monitoring system, J. Phys. Conf. Ser., vol. 1362, no. 1, (2019).

DOI: 10.1088/1742-6596/1362/1/012128

Google Scholar

[8] J. E. Lawn et al., Preterm baby survival and care round the world Born Too Soon: Care for the preterm baby, Reprod. Health, vol. 10, no. 10, p.5, 2013, [Online]. Available: http://www.reproductive-health-journal.com/content/10/S1/S5.

DOI: 10.1186/1742-4755-10-s1-s5

Google Scholar

[9] R. Fadilla et al., A Multifunction Infant Incubator Monitoring System with Phototherapy and ESP-32 Based Mechanical Swing, Int. J. Sci. Technol. Manag., vol. 1, no. 4, p.371–381, (2020).

DOI: 10.46729/ijstm.v1i4.93

Google Scholar

[10] F. Kristya, S. Luthfiyah, I. D. G. Hari Wisana, and M. Thaseen, Baby Incubator Monitoring Center for Temperature and Humidity using WiFi Network, J. Electron. Electromed. Eng. Med. Informatics, vol. 3, no. 1, p.8–13, (2021).

DOI: 10.35882/jeeemi.v3i1.2

Google Scholar

[11] M. Shaib, M. Rashid, L. Hamawy, M. Arnout, I. El Majzoub, and A. J. Zaylaa, Advanced portable preterm baby incubator, Int. Conf. Adv. Biomed. Eng. ICABME, vol. 2017-Octob, no. October, (2017).

DOI: 10.1109/icabme.2017.8167522

Google Scholar

[12] B. Ashish, Temperature monitored IoT based smart incubator, Proc. Int. Conf. IoT Soc. Mobile, Anal. Cloud, I-SMAC 2017, p.497–501, (2017).

DOI: 10.1109/i-smac.2017.8058400

Google Scholar

[13] M. Ali, M. Abdelwahab, S. Awadekreim, and S. Abdalla, Development of a Monitoring and Control System of Infant Incubator, 2018 Int. Conf. Comput. Control. Electr. Electron. Eng. ICCCEEE 2018, no. Lcd, p.1–4, (2018).

DOI: 10.1109/iccceee.2018.8515785

Google Scholar

[14] P. Kshirsgar, V. More, V. Hendre, P. Chippalkatti, and K. Paliwal, IOT Based Baby Incubator for Clinic, Lect. Notes Electr. Eng., vol. 570, p.349–355, (2020).

DOI: 10.1007/978-981-13-8715-9_42

Google Scholar

[15] H. B. D. L. Mathew, Ashish Gupta, Controlling of Temperature and Humidity for an Infant Incubator Using Microcontroller, Int. J. Adv. Res. Electr. Electron. Instrum. Eng., vol. 04, no. 06, p.4975–4982, (2015).

DOI: 10.15662/ijareeie.2015.0406012

Google Scholar

[16] B. Radhika and V. R. Sheshagiri Rao, Incubator baby parameter sensing and monitoring, Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 7, p.2945–2947, (2019).

Google Scholar

[17] F. Pinto, E. Fernandes, D. Virella, A. Abrantes, and M. T. Neto, Born Preterm: A Public Health Issue, Port. J. Public Heal., vol. 37, no. 1, p.38–49, (2019).

DOI: 10.1159/000497249

Google Scholar

[18] J. Yu, P. Xu, Z. Peng, H. Qiang, and X. Shen, The design of multi temperature and humidity monitoring system for incubator, Seventh Int. Conf. Electron. Inf. Eng., vol. 10322, p. 103220P, (2017).

DOI: 10.1117/12.2265359

Google Scholar

[19] B. N. Simon, N. P. Redely, and A. Kantak, A theoretical model of infant incubator dynamics, J. Biomech. Eng., vol. 116, no. 3, p.263–269, (1994).

DOI: 10.1115/1.2895729

Google Scholar

[20] M. Mamun, A Wireless Based Temperature , Humidity and Light Intensity Monitoring System for Child Incubators, Int. J. Eng. Trends Appl., vol. 2, no. 3, p.67–71, (2015).

Google Scholar

[21] A. Latif, H. A. Widodo, R. A. Atmoko, T. N. Phong, and E. T.Helmy, Temperature and Humidity Controlling System for Baby Incubator, J. Robot. Control, vol. 2, no. 3, p.190–193, (2021).

DOI: 10.18196/jrc.2376

Google Scholar

[22] D. Anagnostakis, J. Petmezakis, J. Messaritakis, and N. Matsaniotis, NOISE POLLUTION IN NEONATAL UNITS: A POTENTIAL HEALTH HAZARD, Acta Pzdiatr Scand, vol. 69, p.771–773, (1980).

DOI: 10.1111/j.1651-2227.1980.tb07147.x

Google Scholar

[23] H. Bess, Further Observations on Noise Levels in Infant Incubators, Off. J. Am. Acad. Pediatr., vol. 63, no. 1, (2021).

Google Scholar

[24] L. Liu, L. Du, and A. Kolla, Wireless communication integrated hybrid active noise control system for infant incubators, 2016 IEEE Signal Process. Med. Biol. Symp. SPMB 2016 - Proc., (2017).

DOI: 10.1109/spmb.2016.7846880

Google Scholar

[25] Y. J. Chang, Y. J. Pan, Y. J. Lin, Y. Z. Chang, and C. H. Lin, A noise-sensor light alarm reduces noise in the newborn intensive care unit, Am. J. Perinatol., vol. 23, no. 5, p.265–271, (2006).

DOI: 10.1055/s-2006-941455

Google Scholar

[26] S. A. Falk and J. C. Farmer, Incubator Noise and Possible Deafness, Arch. Otolaryngol., vol. 97, no. 5, p.385–387, (1973).

Google Scholar

[27] D. D. Vyas, System for Remote Monitoring and Control of Baby Incubator and Warmer, Int. J. Futur. Trends Eng. Technol., vol. Vol. 3 (06, no. May 2016, p.18, (2017).

Google Scholar

[28] I. A. Abdulrazzak, H. Bierk, and L. A. Aday, Humidity and temperature monitoring, Int. J. Eng. Technol., vol. 7, no. 4, p.5174–5177, (2018).

Google Scholar

[29] M. V. Narayana, K. Dusarlapudi, K. Uday Kiran, and B. Sakthi Kumar, IoT based real time neonate monitoring system using arduino, J. Adv. Res. Dyn. Control Syst., vol. 9, no. Special issue 14, p.1764–1772, (2017).

Google Scholar

[30] A. Latif, A. Z. Arfianto, J. E. Poetro, T. N. Phong, and E. T.Helmy, Temperature Monitoring System for Baby Incubator Based on Visual Basic, J. Robot. Control, vol. 2, no. 1, p.47–50, (2021).

DOI: 10.18196/jrc.2151

Google Scholar

[31] M. Subramanian, T. Sheela, K. Srividya, and D. Arulselvam, Security and health monitoring system of the baby in incubator, Int. J. Eng. Adv. Technol., vol. 8, no. 6, p.3582–3585, (2019).

Google Scholar

[32] I. LorettaG, Monitoring of Incubator using IoT, Int. Res. J. Eng. Technol., vol. 6, no. 4, p.106–110, (2018), [Online]. Available: www.irjet.net.

Google Scholar

[33] D. I. Shin, S. J. Huh, T. S. Lee, and I. Y. Kim, Web-based remote monitoring of infant incubators in the ICU, Int. J. Med. Inform., vol. 71, no. 2–3, p.151–156, (2003).

DOI: 10.1016/s1386-5056(03)00095-9

Google Scholar

[34] I. Allafi and T. Iqbal, Design and implementation of a low cost web server using ESP32 for real-time photovoltaic system monitoring, 2017 IEEE Electr. Power Energy Conf. EPEC 2017, vol. 2017-Octob, p.1–5, (2018).

DOI: 10.1109/epec.2017.8286184

Google Scholar

[35] J. Bedard and R. Sanders, Temperature and humidity monitoring systems for transport operations, No. 992. Switzerland: World Health Organization, (2014).

Google Scholar