[1]
Ananda, T., Modi, A., Chakraborty, I., Managuli, V., Mukhopadhyay, C. and Mazumder, N. Nosocomial Infections and Role of Nanotechnology. Bioengineering. 2002; 9(2): 51.
DOI: 10.3390/bioengineering9020051
Google Scholar
[2]
M. Azizi-Lalabadi, A. Ehsani, B. Divband, and M. Alizadeh-Sani. Antimicrobial activity of Titanium dioxide and Zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Scientific reports. 2019; 9(1): 1-10.
DOI: 10.1038/s41598-019-54025-0
Google Scholar
[3]
Canaparo, R., Foglietta, F., Limongi, T. and Serpe, L., 2020. Biomedical applications of reactive oxygen species generation by metal nanoparticles. Materials. 2020: 14(1): 53.
DOI: 10.3390/ma14010053
Google Scholar
[4]
Z. Yu, Q. Li, J. Wang, Y Yu, Y. Wang, Q. Zhou and P. Li. Reactive oxygen species- related nanoparticle toxicity in the biomedical field. Nanoscale research letters. 2020; 15: 1-14.
DOI: 10.1186/s11671-020-03344-7
Google Scholar
[5]
H.J. Johnston, G. Hutchison, F.M. Christensen, S. Peters, S. Hankin, and V. Stone. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Critical reviews in toxicology. 2010; 40(4): 328-346.
DOI: 10.3109/10408440903453074
Google Scholar
[6]
Saharudin, K. A., Sreekantan, S., Basiron, N., Khor, Y. L., Harun, N. H., SMN Mydin, R. B., . Md Akil, H., Seeni, A & Vignesh, K. 2018. Bacteriostatic activity of LLDPE nanocomposite embedded with sol–gel synthesized TiO2/ZnO coupled oxides at various ratios. Polymers, 10(8), 878.
DOI: 10.3390/polym10080878
Google Scholar
[7]
Harun, N. H., Mydin, R. B. S. N., Sreekantan, S., Saharudin, K. A., Basiron, N., & Seeni, A. 2020a. The bactericidal potential of LLDPE with TiO2/ZnO nanocomposites against multidrug resistant pathogens associated with hospital acquired infections. Journal of Biomaterials Science, Polymer Edition, 31(14), 1757-1769.
DOI: 10.1080/09205063.2020.1775759
Google Scholar
[8]
Harun, N. H., Mydin, R. B. S., Sreekantan, S., Saharudin, K. A., Basiron, N., Aris, F., Wan Mohd Zain, W.N. & Seeni, A. 2020b. Bactericidal capacity of a heterogeneous TiO2/ZnO nanocomposite against multidrug-resistant and non-multidrug-resistant bacterial strains associated with nosocomial infections. ACS omega, 5(21), 12027-12034.
DOI: 10.1021/acsomega.0c00213
Google Scholar
[9]
Harun, N. H., Mydin, R. B. S., Sreekantan, S., Saharuddin, K. A., & Seeni, A. 2020c. In vitro biodegradation evaluation of linear low density polyethylene embedded with TiO2/ZnO couple oxides. In IOP Conference Series: Materials Science and Engineering (Vol. 932, No. 1, p.012032). IOP Publishing.
DOI: 10.1088/1757-899x/932/1/012032
Google Scholar
[10]
Harun, N.H., Mydin, R.B.S., Sreekantan, S., Saharuddin, K.A. and Seeni, A. In vitro bio- interaction responses and hemocompatibility of nano-based linear low-density polyethylene polymer embedded with heterogeneous TiO2/ZnO nanocomposites for biomedical applications. Journal of Biomaterials Science, Polymer Edition. 2021; 32(10):1301-1311.
DOI: 10.1080/09205063.2021.1916866
Google Scholar
[11]
Yu, Z., Li, Q., Wang, J., Yu, Y., Wang, Y., Zhou, Q. and Li, P. Reactive oxygen species- related nanoparticle toxicity in the biomedical field. Nanoscale research letters. 2020; 15(1): 1-14.
DOI: 10.1186/s11671-020-03344-7
Google Scholar
[12]
Sun, Y., Lu, Y., Saredy, J., Wang, X., Drummer IV, C., Shao, Y., Saaoud, F., Xu, K., Liu, M., Yang, W.Y. and Jiang, X. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox biology. 2020; 37: 101696.
DOI: 10.1016/j.redox.2020.101696
Google Scholar
[13]
Baird, L. and Yamamoto, M. The molecular mechanisms regulating the KEAP1-NRF2 pathway. Molecular and cellular biology. 2020; 40(13): .e00099-20.
DOI: 10.1128/mcb.00099-20
Google Scholar
[14]
He, F., Ru, X. and Wen, T. NRF2, a transcription factor for stress response and beyond. International Journal of Molecular Sciences. 2020; 21(13): 4777.
DOI: 10.3390/ijms21134777
Google Scholar
[15]
Pei, X., Jiang, H., Xu, G., Li, C., Li, D. and Tang, S. Lethality of zinc oxide nanoparticles surpasses conventional zinc oxide via oxidative stress, mitochondrial damage and calcium overload: A comparative hepatotoxicity study. International Journal of Molecular Sciences. 2022; 23(12): 6724.
DOI: 10.3390/ijms23126724
Google Scholar
[16]
R.Y. Pelgrift and A.J. Friedman. Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced drug delivery reviews. 2013; 65(13-14):1803-1815.
DOI: 10.1016/j.addr.2013.07.011
Google Scholar
[17]
M. Dizdaroglu, and P. Jaruga. Mechanisms of free radical-induced damage to DNA. Free radical research. 2012; 46(4): 382-419.
DOI: 10.3109/10715762.2011.653969
Google Scholar
[18]
Han, B., Pei, Z., Shi, L., Wang, Q., Li, C., Zhang, B., Su, X., Zhang, N., Zhou, L., Zhao, B. and Niu, Y., 2020. TiO2 nanoparticles caused DNA damage in lung and extra- pulmonary organs through ROS-activated FOXO3a signaling pathway after intratracheal administration in rats. International Journal of Nanomedicine, 15, p.6279.
DOI: 10.2147/ijn.s254969
Google Scholar
[19]
S.R. Saptarshi, B.N. Feltis, P.F. Wright and A.L. Lopata. Investigating the immunomodulatory nature of zinc oxide nanoparticles at sub-cytotoxic levels in vitro and after intranasal instillation in vivo. Journal of nanobiotechnology. 2015; 13(1): 1-11.
DOI: 10.1186/s12951-015-0067-7
Google Scholar
[20]
J.J.E. Li, S. Muralikrishnan, C.T. Ng, L.Y.L. Yung, Land B.H. Bay. Nanoparticle- induced pulmonary toxicity. Experimental biology and medicine. 2010; 235(9): 1025- 1033.
DOI: 10.1258/ebm.2010.010021
Google Scholar
[21]
Khan, Mahmood Ahmad, and Mohd Jahir Khan. Nano-gold displayed anti- inflammatory property via NF-kB pathways by suppressing COX-2 activity. Artificial Cells, Nanomedicine, and Biotechnology. 2018; 46: 1149-1158.
DOI: 10.1080/21691401.2018.1446968
Google Scholar
[22]
Dukhinova, M.S., Prilepskii, A.Y., Shtil, A.A. and Vinogradov, V.V., 2019. Metal oxide nanoparticles in therapeutic regulation of macrophage functions. Nanomaterials, 9(11), p.1631.
DOI: 10.3390/nano9111631
Google Scholar
[23]
Wang, S., Alenius, H., El-Nezami, H. and Karisola, P., 2022. A New Look at the Effects of Engineered ZnO and TiO2 Nanoparticles: Evidence from Transcriptomics Studies. Nanomaterials, 12(8), p.1247.
DOI: 10.3390/nano12081247
Google Scholar
[24]
L.K. Braydich-Stolle, J.L. Speshock, A. Castle, M. Smith, R.C. Murdock, and S.M. Hussain. Nanosized aluminum altered immune function. ACS nano. 2010; 4(7): 3661- 3670.
DOI: 10.1021/nn9016789
Google Scholar
[25]
S. Singh, T. Shi, R. Duffin, C. Albrecht, D. van Berlo, D. Höhr, and R.P. Schins. Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particles. Toxicology and applied pharmacology. 2017; 222(2): 141- 151.
DOI: 10.1016/j.taap.2007.05.001
Google Scholar
[26]
W. Wu, J.M. Samet, D.B. Peden and P.A. Bromberg. Phosphorylation of p.65 is required for zinc oxide nanoparticle–induced interleukin 8 expression in human bronchial epithelial cells. Environmental health perspectives. 2010; 118(7): 982-987.
DOI: 10.1289/ehp.0901635
Google Scholar
[27]
Sivandzade, F., Prasad, S., Bhalerao, A. and Cucullo, L. NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: molecular mechanisms and possible therapeutic approaches. Redox biology. 2019; 21: 101059.
DOI: 10.1016/j.redox.2018.11.017
Google Scholar
[28]
Ramadan, M.A., Shawkey, A.E., Rabeh, M.A. and Abdellatif, A.O. Expression of P53, BAX, and BCL-2 in human malignant melanoma and squamous cell carcinoma cells after tea tree oil treatment in vitro. Cytotechnology. 2019; 71(1): 461-473.
DOI: 10.1007/s10616-018-0287-4
Google Scholar
[29]
Y. Fan, H. Lu, L. An, C. Wang, Z. Zhou, F. Feng, and Q. Zhao. Effect of active fraction of Eriocaulon sieboldianum on human leukemia K562 cells via proliferation inhibition, cell cycle arrest and apoptosis induction. Environmental toxicology and pharmacology. 2016; 43: 13-20.
DOI: 10.1016/j.etap.2015.11.001
Google Scholar
[30]
Khanzadeh, T., Hagh, M.F., Talebi, M., Yousefi, B., Azimi, A. and Baradaran, B. Investigation of BAX and BCL2 expression and apoptosis in a resveratrol-and prednisolone-treated human T-ALL cell line, CCRF-CEM. Blood research. 2018; 53(1): 53.
DOI: 10.5045/br.2018.53.1.53
Google Scholar
[31]
S. Mohan, S. I. Abdelwahab, B. Kamalidehghan, S. Syam, K.S. May, N.S.M. Harmal, and A. Zajmi. Involvement of NF-κB and Bcl2/Bax signaling pathways in the apoptosis of MCF7 cells induced by a xanthone compound Pyranocycloartobiloxanthone A. Phytomedicine. 2012; 19(11): 1007-1015.
DOI: 10.1016/j.phymed.2012.05.012
Google Scholar
[32]
W.K. Ng, L.S. Yazan and M. Ismail. Thymoquinone from Nigella sativa was more potent than cisplatin in eliminating of SiHa cells via apoptosis with downregulation of Bcl-2 protein. Toxicology in vitro. 2011; 25(7): 1392-1398.
DOI: 10.1016/j.tiv.2011.04.030
Google Scholar