[1]
Ž. P. Kačarević, P. Rider, S. Alkildani, S. Retnasingh, M. Pejakić, R.Schnettler, M. Gosau, R. Smeets, O. Jung, M. Barbeck,, An introduction to bone tissue engineering, The International Journal of Artificial Organs. 00(0) (2019) 1-18.
DOI: 10.1177/0391398819876286
Google Scholar
[2]
T. Tariverdian, F. Sefat, M. Gelinsky, M. Mozafari, Scaffold for bone tissue engineering, Bioengineering Research Group, Handbook of Tissue Engineering Scaffolds. 1 (2019) 189-209.
DOI: 10.1016/b978-0-08-102563-5.00010-1
Google Scholar
[3]
F.S. Hashim, M.M. Ismail, W.A. Hussain, Tri-calcium Phosphate (Nanoparticles/Nanofibers)/PVA for Bone Tissue Engineering, Acta Physica Polonica A. 140(4) (2021) 337–343.
DOI: 10.12693/aphyspola.140.337
Google Scholar
[4]
X. LIU and X. M. PETER, Polymeric Scaffolds for Bone Tissue Engineering, Annals of Biomedical Engineering. 32 (2004) 477-486.
DOI: 10.1023/b:abme.0000017544.36001.8e
Google Scholar
[5]
W. A. Hussain, M. M. Ismail and F. S. Hashim, Bio-application of Poly (Vinyl Alcohol) /Biphasic Calcium Phosphate Scaffold as Bone Tissue Replacement, Current Materials Science. 15 (2022) 271 – 279.
DOI: 10.2174/2666145415666220330110601
Google Scholar
[6]
E. Dattol, E. I. Parrotta, S. Scalise, G. Perozziello, T. Limongi, P. Candeloro, M. L. Coluccio, C. Maletta, L. Bruno, M. T. D. Angelis, G. Santamaria, V. Mollace, E. Lamanna, E. D. Fabrizio, G. Cuda, Development of 3D PVA scaffolds for cardiac tissue engineering and cell screening applications, Journal of The Royal Society of Chemistry. 9 (2019) 4246-4257.
DOI: 10.1039/c8ra08187e
Google Scholar
[7]
R. Z. L. Geros, Properties of Osteoconductive Biomaterials: Calcium Phosphates, clinical orthopedics and related research. 359 (2002) 81-98.
Google Scholar
[8]
W.A. Hussain, S.M.H. Al-Jawad, S.A. Hannon, Effect of carbon fibre layer with alumina and tri calcium phosphate on mechanical properties of denture base, International Journal of Nano and Biomaterials. 10(1) (2021) 22–33.
DOI: 10.1504/ijnbm.2021.10037540
Google Scholar
[9]
W. A. Hussain, M. M. Ismail, S. Taher, Incorporation of Treated Woven Carbon Fiber to Methacrylate Resin for Heat-Cured Acrylic Denture Composite, Journal of Biomimetics Biomaterials and Biomedical Engineering. 56 (2022)153-164.
DOI: 10.4028/p-627g18
Google Scholar
[10]
H. R.R. Ramay, M. Zhang, Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering, Elsevier Journal, Biomaterials. 25 (2004) 5171-5180.
DOI: 10.1016/j.biomaterials.2003.12.023
Google Scholar
[11]
W. A. Hussain, E. H.A. Al-Mosawe, W. M. Ismail and L. H. Alwan, Porous Biphasic Calcium Phosphate for Biomedical Application, Journal of Biomimetics, Biomaterials and Biomedical Engineering. 49 (2021) 101-110.
DOI: 10.4028/www.scientific.net/jbbbe.49.101
Google Scholar
[12]
|H. S. Mansur, and H. S. Costa, Nanostructured poly(vinyl alcohol)/bioactive glass and poly (vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications, Chemical Engineering Journal. 137 (2008) 72-83.
DOI: 10.1016/j.cej.2007.09.036
Google Scholar
[13]
Ashraf Sh. Asran, S. Henning, Goerg H. Michler, Polyvinyl alcohol–collagen–hydroxyapatite biocomposite nanofibrous scaffold: Mimicking the key features of natural bone at the nanoscale level, Journal of Elsevier, polymer. 51 (2010) 868-876.
DOI: 10.1016/j.polymer.2009.12.046
Google Scholar
[14]
M. Swethaa, K. Sahithi, A. Moorthi, N. Srinivasan, K. Ramasamy, N. Selvamurugan, Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering, International Journal of Biological Macromolecules. 47 (2010) 1-4.
DOI: 10.1016/j.ijbiomac.2010.03.015
Google Scholar
[15]
Wafaa A. H., Ban A.B., Muna Y.S., Luay H. A, Impact and Flexural Strength of Kaolinite Glass Fibers Reinforced Heat-Cured Acrylic Denture, Materials Science Forum. 1002 (2020) 340-3##.
DOI: 10.4028/www.scientific.net/msf.1002.340
Google Scholar
[16]
S.Y. Taher , W.A. Hussain, The effect of acidic treatment of carbon fiber on denture mechanical properties, Journal of Physics: Conference Series. 30(1) (2021) 272–278.
Google Scholar
[17]
A. Bhowmick, N. Pramanik, T. Mitra, A. Gnanamani, M. Dasc, P. P. Kundu, Mechanical and biological investigations of chitosan-polyvinyl alcohol based ZrO2 doped porous hybrid composites for bone tissue engineering applications, Journal of The Royal Society of Chemistry. issue,1-3 (2013)
DOI: 10.1039/c7nj01246b
Google Scholar
[18]
Z. Tang, X. Li, Y. Tan, H. Fan, and X. Zhang, The material and biological characteristics of osteoinductive calcium phosphate ceramics, Regenerative biomaterials. 5 (2018) 43-59.
DOI: 10.1093/rb/rbx024
Google Scholar
[19]
S. Soliman, S. Sant, J. W. Nichol, M. Khabiry, E. Traversa, and A. K. hosseini, Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density, Journal of Biomedical Materials Research Part A. 96 (2011) 566-574.
DOI: 10.1002/jbm.a.33010
Google Scholar
[20]
C. Domingo, R. W. Arcís, A. López‐Macipe, R. Osorio, R. Rodríguez‐Clemente, J. Murtra, M. A. Fanovich, and M. Toledano, Dental composites reinforced with hydroxyapatite: Mechanical behavior and absorption/elution characteristics, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials. 56 (2001) 297-305.
DOI: 10.1002/1097-4636(200108)56:2<297::aid-jbm1098>3.0.co;2-s
Google Scholar
[21]
G. Chen, N. Chen, and Q. Wang, Fabrication and properties of poly (vinyl alcohol)/β-tricalcium phosphate composite scaffolds via fused deposition modeling for bone tissue engineering, Composites Science and Technology.172 (2019) 17-28.
DOI: 10.1016/j.compscitech.2019.01.004
Google Scholar
[22]
A. Bhowmick, N. Pramanik, T. Mitra, A. Gnanamani, M. Das, and P. P. Kundu, Mechanical and biological investigations of chitosan–polyvinyl alcohol based ZrO 2 doped porous hybrid composites for bone tissue engineering applications, New Journal of Chemistry. 41 (2017) 7524-7530.
DOI: 10.1039/c7nj01246b
Google Scholar
[23]
G. Chen, N. Chen, Q. Wang, Fabrication and properties of poly(vinyl alcohol)/β-tricalcium phosphate composite scaffolds via fused deposition modeling for bone tissue engineering, Composites Science and Technology. S0266-3538(18)32809-4, (2019).
DOI: 10.1016/j.compscitech.2019.01.004
Google Scholar
[24]
A. A. Ashraf, S. M. Zebarjad, M. J. Hadianfard, The cross-linked polyvinyl alcohol/hydroxyapatite nanocomposite foam, Journal of materials research technology. 8(3) (2019) 3149–3157.
DOI: 10.1016/j.jmrt.2019.02.024
Google Scholar
[25]
C. Domingo, R. W. Arcís, A. L. Macipe, R. Osorio, R. R. Clemente, J. Murtra, M. A. Fanovich, and M. Toledano, Dental composites reinforced with hydroxyapatite: Mechanical behavior and absorption/elution characteristics, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 56 (2001) 297-305,.
DOI: 10.1002/1097-4636(200108)56:2<297::aid-jbm1098>3.0.co;2-s
Google Scholar
[26]
V. S. Vazquez, C. S. Vazquez, J. O. L. Cortes, Physical Characterization of Freeze-Dried Foam Prepared From Aloe Vera Gel and Guar Gum, Vitae, Revista De La Facltad De Ciencias Farmaceuticas Y Alimentarias. 22 (2015) 75-86.
DOI: 10.17533/udea.vitae.v22n2a02
Google Scholar
[27]
A. A. Ashraf, S. M. Zebarjad, M. J. Hadianfard, The cross-linked polyvinyl alcohol/hydroxyapatite nanocomposite foam, journal of materials research and technology. 8(3) (2019) 3149–3157.
DOI: 10.1016/j.jmrt.2019.02.024
Google Scholar
[28]
P. Chocholata, V. Kulda, J. Dvorakova, J. K. Dobra, and V. Babuska, Biological evaluation of polyvinyl alcohol hydrogels enriched by hyaluronic acid and hydroxyapatite, International Journal of Molecular Sciences. 21 (2020) 5719,.
DOI: 10.3390/ijms21165719
Google Scholar
[29]
L. V. Thomas, U. Arun, S. Remya, and P. D. Nair, A biodegradable and biocompatible PVA–citric acid polyester with potential applications as matrix for vascular tissue engineering, Journal of Materials Science: Materials in Medicine. 20 (2009) 259-269,.
DOI: 10.1007/s10856-008-3599-7
Google Scholar
[30]
S. H. Huang, Y.J. Chen, C.T. Kao, C.C. Lin, T. H. Huang, and M. Y. Shie, Physicochemical properties and biocompatibility of silica doped β-tricalcium phosphate for bone cement, Journal of Dental Sciences. 10 (2015) 282-290.
DOI: 10.1016/j.jds.2014.07.001
Google Scholar
[31]
R. Kandulna, and R. B. Choudhary, Concentration-dependent behaviors of ZnO-reinforced PVA–ZnO nanocomposites as electron transport materials for OLED application, Polymer Bulletin. 75, (2018) 3089-3107.
DOI: 10.1007/s00289-017-2186-9
Google Scholar