Scaffold of Bone Tissue Engineering Based on PVA/BCP Bioactive Composite Foam

Article Preview

Abstract:

This study constructed poly (vinyl alcohol)/ biphasic-calcium phosphate (PVA/ BCP) composite scaffolds. The biphasic-calcium phosphate (BCP) was incorporated in 0, 5, 10, and 25 wt%; BP0, BP1, BP2, and BP3, respectively. The surface morphology was done with a scanning electron microscope (SEM) to observe the porosity and the pore size and distribution of fabricated samples. The Fourier Transform Infrared spectroscopy (FTIR), and some physical properties such as porosity, density, swelling ratio, flexural strength, impact strength, and compression strength were also investigated. The biodegradation and bioactivity were also tested. The SEM results showed that the pores increased and became more regular and interconnected to each other with the increasing addition of BCP. The density decreased with the addition of BCP, while the porosity and mechanical properties increased with additives. The sample of BP3 has a high porosity (67%) and high impact strength (11.9 MPa). The high porosity is favorable for bone implants, and the mechanical strength must also be considered. The bio tests show that the biodegradation became regular by adding the BCP powder, which leads to ease of controlling the gradual degradation and the samples are bioactive for bone tissue. Keywords: Bone Tissue Engineering, PVA, Biphasic-Calcium Phosphate, Porosity, Mechanical properties

You might also be interested in these eBooks

Info:

Pages:

59-70

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ž. P. Kačarević, P. Rider, S. Alkildani, S. Retnasingh, M. Pejakić, R.Schnettler, M. Gosau, R. Smeets, O. Jung, M. Barbeck,, An introduction to bone tissue engineering, The International Journal of Artificial Organs. 00(0) (2019) 1-18.

DOI: 10.1177/0391398819876286

Google Scholar

[2] T. Tariverdian, F. Sefat, M. Gelinsky, M. Mozafari, Scaffold for bone tissue engineering, Bioengineering Research Group, Handbook of Tissue Engineering Scaffolds. 1 (2019) 189-209.

DOI: 10.1016/b978-0-08-102563-5.00010-1

Google Scholar

[3] F.S. Hashim, M.M. Ismail, W.A. Hussain, Tri-calcium Phosphate (Nanoparticles/Nanofibers)/PVA for Bone Tissue Engineering, Acta Physica Polonica A. 140(4) (2021) 337–343.

DOI: 10.12693/aphyspola.140.337

Google Scholar

[4] X. LIU and X. M. PETER, Polymeric Scaffolds for Bone Tissue Engineering, Annals of Biomedical Engineering. 32 (2004) 477-486.

DOI: 10.1023/b:abme.0000017544.36001.8e

Google Scholar

[5] W. A. Hussain, M. M. Ismail and F. S. Hashim, Bio-application of Poly (Vinyl Alcohol) /Biphasic Calcium Phosphate Scaffold as Bone Tissue Replacement, Current Materials Science. 15 (2022) 271 – 279.

DOI: 10.2174/2666145415666220330110601

Google Scholar

[6] E. Dattol, E. I. Parrotta, S. Scalise, G. Perozziello, T. Limongi, P. Candeloro, M. L. Coluccio, C. Maletta, L. Bruno, M. T. D. Angelis, G. Santamaria, V. Mollace, E. Lamanna, E. D. Fabrizio, G. Cuda, Development of 3D PVA scaffolds for cardiac tissue engineering and cell screening applications, Journal of The Royal Society of Chemistry. 9 (2019) 4246-4257.

DOI: 10.1039/c8ra08187e

Google Scholar

[7] R. Z. L. Geros, Properties of Osteoconductive Biomaterials: Calcium Phosphates, clinical orthopedics and related research. 359 (2002) 81-98.

Google Scholar

[8] W.A. Hussain, S.M.H. Al-Jawad, S.A. Hannon, Effect of carbon fibre layer with alumina and tri calcium phosphate on mechanical properties of denture base, International Journal of Nano and Biomaterials. 10(1) (2021) 22–33.

DOI: 10.1504/ijnbm.2021.10037540

Google Scholar

[9] W. A. Hussain, M. M. Ismail, S. Taher, Incorporation of Treated Woven Carbon Fiber to Methacrylate Resin for Heat-Cured Acrylic Denture Composite, Journal of Biomimetics Biomaterials and Biomedical Engineering. 56 (2022)153-164.

DOI: 10.4028/p-627g18

Google Scholar

[10] H. R.R. Ramay, M. Zhang, Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering, Elsevier Journal, Biomaterials. 25 (2004) 5171-5180.

DOI: 10.1016/j.biomaterials.2003.12.023

Google Scholar

[11] W. A. Hussain, E. H.A. Al-Mosawe, W. M. Ismail and L. H. Alwan, Porous Biphasic Calcium Phosphate for Biomedical Application, Journal of Biomimetics, Biomaterials and Biomedical Engineering. 49 (2021) 101-110.

DOI: 10.4028/www.scientific.net/jbbbe.49.101

Google Scholar

[12] |H. S. Mansur, and H. S. Costa, Nanostructured poly(vinyl alcohol)/bioactive glass and poly (vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications, Chemical Engineering Journal. 137 (2008) 72-83.

DOI: 10.1016/j.cej.2007.09.036

Google Scholar

[13] Ashraf Sh. Asran, S. Henning, Goerg H. Michler, Polyvinyl alcohol–collagen–hydroxyapatite biocomposite nanofibrous scaffold: Mimicking the key features of natural bone at the nanoscale level, Journal of Elsevier, polymer. 51 (2010) 868-876.

DOI: 10.1016/j.polymer.2009.12.046

Google Scholar

[14] M. Swethaa, K. Sahithi, A. Moorthi, N. Srinivasan, K. Ramasamy, N. Selvamurugan, Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering, International Journal of Biological Macromolecules. 47 (2010) 1-4.

DOI: 10.1016/j.ijbiomac.2010.03.015

Google Scholar

[15] Wafaa A. H., Ban A.B., Muna Y.S., Luay H. A, Impact and Flexural Strength of Kaolinite Glass Fibers Reinforced Heat-Cured Acrylic Denture, Materials Science Forum. 1002 (2020) 340-3##.

DOI: 10.4028/www.scientific.net/msf.1002.340

Google Scholar

[16] S.Y. Taher , W.A. Hussain, The effect of acidic treatment of carbon fiber on denture mechanical properties, Journal of Physics: Conference Series. 30(1) (2021) 272–278.

Google Scholar

[17] A. Bhowmick, N. Pramanik, T. Mitra, A. Gnanamani, M. Dasc, P. P. Kundu, Mechanical and biological investigations of chitosan-polyvinyl alcohol based ZrO2 doped porous hybrid composites for bone tissue engineering applications, Journal of The Royal Society of Chemistry. issue,1-3 (2013)

DOI: 10.1039/c7nj01246b

Google Scholar

[18] Z. Tang, X. Li, Y. Tan, H. Fan, and X. Zhang, The material and biological characteristics of osteoinductive calcium phosphate ceramics, Regenerative biomaterials. 5 (2018) 43-59.

DOI: 10.1093/rb/rbx024

Google Scholar

[19] S. Soliman, S. Sant, J. W. Nichol, M. Khabiry, E. Traversa, and A. K. hosseini, Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density, Journal of Biomedical Materials Research Part A. 96 (2011) 566-574.

DOI: 10.1002/jbm.a.33010

Google Scholar

[20] C. Domingo, R. W. Arcís, A. López‐Macipe, R. Osorio, R. Rodríguez‐Clemente, J. Murtra, M. A. Fanovich, and M. Toledano, Dental composites reinforced with hydroxyapatite: Mechanical behavior and absorption/elution characteristics, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials. 56 (2001) 297-305.

DOI: 10.1002/1097-4636(200108)56:2<297::aid-jbm1098>3.0.co;2-s

Google Scholar

[21] G. Chen, N. Chen, and Q. Wang, Fabrication and properties of poly (vinyl alcohol)/β-tricalcium phosphate composite scaffolds via fused deposition modeling for bone tissue engineering, Composites Science and Technology.172 (2019) 17-28.

DOI: 10.1016/j.compscitech.2019.01.004

Google Scholar

[22] A. Bhowmick, N. Pramanik, T. Mitra, A. Gnanamani, M. Das, and P. P. Kundu, Mechanical and biological investigations of chitosan–polyvinyl alcohol based ZrO 2 doped porous hybrid composites for bone tissue engineering applications, New Journal of Chemistry. 41 (2017) 7524-7530.

DOI: 10.1039/c7nj01246b

Google Scholar

[23] G. Chen, N. Chen, Q. Wang, Fabrication and properties of poly(vinyl alcohol)/β-tricalcium phosphate composite scaffolds via fused deposition modeling for bone tissue engineering, Composites Science and Technology. S0266-3538(18)32809-4, (2019).

DOI: 10.1016/j.compscitech.2019.01.004

Google Scholar

[24] A. A. Ashraf, S. M. Zebarjad, M. J. Hadianfard, The cross-linked polyvinyl alcohol/hydroxyapatite nanocomposite foam, Journal of materials research technology. 8(3) (2019) 3149–3157.

DOI: 10.1016/j.jmrt.2019.02.024

Google Scholar

[25] C. Domingo, R. W. Arcís, A. L. Macipe, R. Osorio, R. R. Clemente, J. Murtra, M. A. Fanovich, and M. Toledano, Dental composites reinforced with hydroxyapatite: Mechanical behavior and absorption/elution characteristics, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 56 (2001) 297-305,.

DOI: 10.1002/1097-4636(200108)56:2<297::aid-jbm1098>3.0.co;2-s

Google Scholar

[26] V. S. Vazquez, C. S. Vazquez, J. O. L. Cortes, Physical Characterization of Freeze-Dried Foam Prepared From Aloe Vera Gel and Guar Gum, Vitae, Revista De La Facltad De Ciencias Farmaceuticas Y Alimentarias. 22 (2015) 75-86.

DOI: 10.17533/udea.vitae.v22n2a02

Google Scholar

[27] A. A. Ashraf, S. M. Zebarjad, M. J. Hadianfard, The cross-linked polyvinyl alcohol/hydroxyapatite nanocomposite foam, journal of materials research and technology. 8(3) (2019) 3149–3157.

DOI: 10.1016/j.jmrt.2019.02.024

Google Scholar

[28] P. Chocholata, V. Kulda, J. Dvorakova, J. K. Dobra, and V. Babuska, Biological evaluation of polyvinyl alcohol hydrogels enriched by hyaluronic acid and hydroxyapatite, International Journal of Molecular Sciences. 21 (2020) 5719,.

DOI: 10.3390/ijms21165719

Google Scholar

[29] L. V. Thomas, U. Arun, S. Remya, and P. D. Nair, A biodegradable and biocompatible PVA–citric acid polyester with potential applications as matrix for vascular tissue engineering, Journal of Materials Science: Materials in Medicine. 20 (2009) 259-269,.

DOI: 10.1007/s10856-008-3599-7

Google Scholar

[30] S. H. Huang, Y.J. Chen, C.T. Kao, C.C. Lin, T. H. Huang, and M. Y. Shie, Physicochemical properties and biocompatibility of silica doped β-tricalcium phosphate for bone cement, Journal of Dental Sciences. 10 (2015) 282-290.

DOI: 10.1016/j.jds.2014.07.001

Google Scholar

[31] R. Kandulna, and R. B. Choudhary, Concentration-dependent behaviors of ZnO-reinforced PVA–ZnO nanocomposites as electron transport materials for OLED application, Polymer Bulletin. 75, (2018) 3089-3107.

DOI: 10.1007/s00289-017-2186-9

Google Scholar