Electrophoretic Deposition of Nanohydroxyapatite on Homogenized Magnesium Based Alloy for Biomedical Applications

Article Preview

Abstract:

Magnesium (Mg) alloys are promising biodegradable implant materials. If successful, they do not require second surgical operation for their removal. However, the focus of this study is to address the limitation of fast degradation rate (DR) which hinders the clinical application of Mg alloys. The bio-corrosion rate of any intermetallic alloy is related to its beta (β) phase volume fraction. Thus, homogenization heat treatment (HHT) was carried out to reduce the β phase. The influence of β phase and the hydroxyapatite powders (HAp) was employed to slow down the initial DR of Mg AZ91 alloy. Samples were cut from Mg grade AZ91 alloy ingot in 10mm x 10mm x 3mm dimension. The samples were prepared and divided into two; the first part was classified as as-received sample (sample a) while the second one was processed for HHT. HHT was carried out at 410°C/10h, cooled inside the furnace and named as homogenized sample (sample b). The HAp was synthesized using a simple wet chemical precipitation technique (SWCPT) and deposited on sample b via electrophoretic deposition (EPD) at different voltages with different deposition times. The HAp, uncoated and coated samples were characterized. Potentiodynamic polarization (PP) and immersion tests were carried out in stimulated body fluid (SBF) to estimate the DR and in vitro bioactivity of Mg AZ91 respectively. The results revealed a significant drop in DR from sample a (1.421 mm per year) to coated sample h (3.73 x 10-4 mm per year). Keywords: Magnesium alloy, biodegradable implants, beta phase, homogenization heat treatment, hydroxyapatite, electrophoretic deposition.

You might also be interested in these eBooks

Info:

Pages:

15-41

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Liao, W. Hu, Q. Le, X. Chen, Y. Jiang, Improvement of Yield Asymmetry and Enhancement of Mechanical Properties of Extruded AZ110 Alloy with La-Rich Misch Metal Addition. Metals and Materials International, (2023), pp.1-14.

DOI: 10.1007/s12540-021-00978-9

Google Scholar

[2] D. Gu, J. Peng, J. Wang, F. Pan, Effect of Mn modification on microstructure and mechanical properties of magnesium alloy with low Gd content. Metals and Materials International, 27.6 (2021), pp.1483-1492.

DOI: 10.1007/s12540-019-00588-6

Google Scholar

[3] E. Maleki, F. Shahri, M. Emamy, Microstructure and tensile properties of Mg–5Zn alloy containing Ca. Metals and Materials International, 27.6(2021), pp.1565-1577.

DOI: 10.1007/s12540-019-00530-w

Google Scholar

[4] C. Tang, K. Wu, W. Liu, D. Feng, G. Zuo, W. Liang, Y. Yang, X. Chen, Q. Li, X. Liu, Dynamic Compression Behavior of a Mg–Gd-Based Alloy at Elevated Temperature. Metals and Materials International, 27.6(2021), pp.1438-1447.

DOI: 10.1007/s12540-019-00558-y

Google Scholar

[5] T.O. Sadiq, B. A. Hameed, J. Idris, O. Olaoye, S. Nursyaza, Z. H. Samsudin, M. 1. Hasnan, Effect of different machining parameters on surface roughness of aluminium alloys based on Si and Mg content. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41.10 (2021), pp.1-11.

DOI: 10.1007/s40430-019-1948-8

Google Scholar

[6] A. H M. Sanchez, B. J. Luthringer, F. Feyerabend, R. Willumeit, Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? A review. Acta Biomater, 13(2015), pp.16-31.

DOI: 10.1016/j.actbio.2014.11.048

Google Scholar

[7] J. Han, P. Wan, Y. Sun, Z. Liu, X. Fan, L. Tan, K. Yang, Fabrication and evaluation of a bioactive Sr–Ca–P contained micro-arc oxidation coating on magnesium strontium alloy for bone repair application. Journal of Materials Science & Technology, 32.3(2016), pp.233-244

DOI: 10.1016/j.jmst.2015.11.012

Google Scholar

[8] S. Khamseh, S. M. Ganjaee, E. Alibakhshi, M. Nemati, Hydrogen-free Cu: Amorphous-C: N Coating on TC4 Titanium Alloy: The Role of Gas Ratio on Mechanical and Antibacterial Potency. Progress in Color, Colorants and Coatings, 14.4(2021a), pp.281-291

Google Scholar

[9] G. Wu, P. Li, H. Feng, X. Zhang, P. K. Chu, Engineering and functionalization of biomaterials via surface modification. J. Mater. Chem. B. 3.10(2015), pp.2024-2042

DOI: 10.1039/c4tb01934b

Google Scholar

[10] A. Cem, A. Serhat, D. Serap, Examination of coating parameters of biopolymer coating on AZ91D magnesium alloy used as implant in human, Metal, (2015).

Google Scholar

[11] S. Khamseh, E. Alibakhshi, B. Ramezanzadeh, M. G. Sari, A tailored pulsed substrate bias voltage deposited (aC: Nb) thin-film coating on GTD-450 stainless steel: Enhancing mechanical and corrosion protection characteristics. Chemical Engineering Journal, 404 (2021b), p.126490

DOI: 10.1016/j.cej.2020.126490

Google Scholar

[12] S. Kunjukunju, A. Roy, M. Ramanathan, B. Lee, J. E. Candiello, P. N. Kumta, A layer-by-layer approach to natural polymer-derived bioactive coatings on magnesium alloys. Acta Biomater. 9.10 (2013), pp.8690-703

DOI: 10.1016/j.actbio.2013.05.013

Google Scholar

[13] M. Daroonparvar, M. A. M. Yajid, N. M. Yusof, H. R. Bakhsheshi-Rad, Fabrication and properties of triplex NiCrAlY/nano Al2O3·13%TiO2/nano TiO2 coatings on a magnesium alloy by atmospheric plasma spraying method. Journal of Alloys and Compounds. 645(2015a), pp.450-466

DOI: 10.1016/j.jallcom.2015.05.106

Google Scholar

[14] X. Li, Z. Weng, W. Yuan, X. Luo, H. M. Wong, X. Liu, S. Wu, K. W. K. Yeung, Y. Zheng, P. K. Chu, Corrosion resistance of dicalcium phosphate dihydrate/poly (lactic-co-glycolic acid) hybrid coating on AZ31 magnesium alloy. Corrosion Science. 102(2016), pp.209-221

DOI: 10.1016/j.corsci.2015.10.010

Google Scholar

[15] H.B. Chen, T. M. Liu, L. W. Lu, J.J. He, Y. B. Zhai, Influence of pre-strain and heat treatment on subsequent deformation behavior of extruded AZ31 Mg alloy. Trans. Nonferrous Met. Soc. China. 25(2015), p.3604−3610

DOI: 10.1016/s1003-6326(15)64001-8

Google Scholar

[16] B. Liu, X. Zhang, G. Y. Xiao, Y. P. Lu, Phosphate chemical conversion coatings on metallic substrates for biomedical application: a review. Mater Sci Eng C Mater Biol Appl. 47 (2015), pp.97-104

DOI: 10.1016/j.msec.2014.11.038

Google Scholar

[17] M. Razavi, M. Fathi, O. Savabi, D. Vashaee, L. Tayebi, In vivo assessments of bioabsorbable AZ91 magnesium implants coated with nanostructured fluoridated hydroxyapatite by MAO/EPD technique for biomedical applications. Mater Sci Eng C Mater Biol Appl. 48 (2015), pp, 21-7

DOI: 10.1016/j.msec.2014.11.020

Google Scholar

[18] R. Rojaee, M. Fathi, K. Raeissi, M. Taherian, Electrophoretic deposition of bioactive glass nanopowders on magnesium-based alloy for biomedical applications. Ceramics International. 40.6 (2014b), pp.7879-7888

DOI: 10.1016/j.ceramint.2013.12.135

Google Scholar

[19] F. Cao, G. L. Song, A. Atrens, Corrosion and passivation of magnesium alloys. Corrosion Science. 111(2016), pp.835-845

DOI: 10.1016/j.corsci.2016.05.041

Google Scholar

[20] F. Lu, A. Ma, J. Jiang, Y. Guo, D. Yang, D. Song, J. Chen, Significantly improved corrosion resistance of heat-treated Mg–Al–Gd alloy containing profuse needle-like precipitates within grains. Corrosion Science. 94(2015a), pp.171-178

DOI: 10.1016/j.corsci.2015.01.052

Google Scholar

[21] Y. Lu, A. Bradshaw, Y. Chiu, I. Jones, Effects of secondary phase and grain size on the corrosion of biodegradable Mg–Zn–Ca alloys. Materials Science and Engineering: C. 48(2015b), pp.480-486.

DOI: 10.1016/j.msec.2014.12.049

Google Scholar

[22] D. Orlov, K. Ralston, N. Birbilis, Y. Estrin, Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing. Acta Materialia. 59.15 (2011), pp.6176-6186

DOI: 10.1016/j.actamat.2011.06.033

Google Scholar

[23] T. Arahira, M. Maruta, S. Matsuya, Characterization and in vitro evaluation of biphasic alpha-tricalcium phosphate/beta-tricalcium phosphate cement. Mater Sci Eng C Mater Biol Appl. 74(2017), pp.478-484

DOI: 10.1016/j.msec.2016.12.049

Google Scholar

[24] O. Yigit, B. Dikici, T. C. Senocak, N. Ozdemir, One-step synthesis of nano-hydroxyapatite/graphene nanosheet hybrid coatings on Ti6Al4V alloys by hydrothermal method and their in-vitro corrosion responses. Surface and Coatings Technology, 394(2020), p.125858

DOI: 10.1016/j.surfcoat.2020.125858

Google Scholar

[25] T. O. Sadiq, N. Siti, J. Idris, A Study of Strontium-Doped Calcium Phosphate Coated on Ti6Al4V Using Microwave Energy. Journal of Bio-and Tribo-Corrosion. 4.3(2018): 40

DOI: 10.1007/s40735-018-0149-9

Google Scholar

[26] M. E. Iskandar, A. Aslani, H. Liu, The effects of nanostructured hydroxyapatite coating on the biodegradation and cytocompatibility of magnesium implants. Journal of Biomedical Materials Research Part A. 101.8(2013), pp.2340-2354

DOI: 10.1002/jbm.a.34530

Google Scholar

[27] P. Amaravathy, S. Sathyanarayanan, S. Sowndarya, N. Rajendran, Bioactive HA/TiO2 coating on magnesium alloy for biomedical applications. Ceramics International. 40.5(2014), pp.6617-6630

DOI: 10.1016/j.ceramint.2013.11.119

Google Scholar

[28] T. O. Sadiq, S. Izman, J. Idris, N. A. Fadil, Synthesis Techniques of Bioceramic Hydroxyapatite for Biomedical Applications, Journal of Biomimetics, Biomaterials and Biomedical Engineering, vol. 59(2023), pp.59-80.

DOI: 10.4028/p-yqw75e

Google Scholar

[29] T. O. Sadiq, L. M. Daud, J. Idris, Investigation of microstructure and mechanical properties of A335 P11 main steam pipe in Stesen Janaelektrik Jambatan Connaught power plant, Malaysia, Trans. Indian Inst. Met. 71.10 (2018), p.2527–2540

DOI: 10.1007/s12666-018-1383-z

Google Scholar

[30] T. O. Sadiq, J. Idris, I. Mohammad, A. Mohd Zamani, Effect of Homogenization Annealing and Hydroxyapatite Coating sing EPD Technique on Magnesium Alloy for Orthopedic Applications. Proceedings of the Eighth Intl. Conf. on Advances in Civil, Structural and Mechanical Engineering - CSM, (2019), page 71-74, 23-24 April, Birmingham, United Kingdom.

Google Scholar

[31] S. T. Olohunde, A. M. Hafzi, I. Jamaliah, A. A. Al-Bakoosh, O. O. Segun, I. O. Sadiq, Corrosion resistance of aluminium-silicon hypereutectic alloy from scrap metal. J Bio Tribo Corros 5.2 (2019), p.41

DOI: 10.1007/s40735-019-0224-x

Google Scholar

[32] M. Instruments, Zetasizer Nano Series User Manual, Malvern Instruments Ltd, Worcs, (2004)

Google Scholar

[33] G. Song, A. Atrens, M. Dargusch, Influence of microstructure on the corrosion of diecast AZ91D. Corrosion science. 41.2(1998), pp.249-273.

DOI: 10.1016/s0010-938x(98)00121-8

Google Scholar

[34] M. H. Fathi, M. A. H. D. I. Salehi, A. Saatchi, V. Mortazavi, S. B. Moosavi, In vitro corrosion behavior of bioceramic, metallic, and bioceramic–metallic coated stainless steel dental implants. Dental materials, 19.3(2003), pp.188-198.

DOI: 10.1016/s0109-5641(02)00029-5

Google Scholar

[35] G. R. Ebrahimi, A. R. Maldar, R. Ebrahimi, A. Davoodi, The effect of homogenization on microstructure and hot ductility behaviour of AZ91 magnesium alloy. Kovove Mater, 48 (2010), pp.277-284

DOI: 10.4149/km_2010_5_277

Google Scholar

[36] J. Chen, J. Wang, E. Han, J. Dong, W. Ke, States and transport of hydrogen in the corrosion process of an AZ91 magnesium alloy in aqueous solution. Corrosion Science, 50.5(2008), pp.1292-1305

DOI: 10.1016/j.corsci.2008.01.028

Google Scholar

[37] W. Zhou, N. Aung, A. Choudhary, M. Kanouni, Evaluation of corrosion resistance of magnesium alloys in radiator coolants. Corrosion Engineering, Science and Technology. 46.4(2011): 386-391

DOI: 10.1179/174327809x409187

Google Scholar

[38] L. Zheng, H. Nie, W. Liang, H. Wang, Y. Wang, Effect of pre-homogenizing treatment on microstructure and mechanical properties of hot-rolled AZ91 magnesium alloys. Journal of Magnesium and Alloys. 4.2(2016), pp.115-122

DOI: 10.1016/j.jma.2016.04.002

Google Scholar

[39] O. Yigit, B. Dikici, N. Ozdemir, Hydrothermal synthesis of nanocrystalline hydroxyapatite–graphene nanosheet on Ti-6Al-7Nb: mechanical and in vitro corrosion performance. Journal of Materials Science: Materials in Medicine, 32.4(2021), pp.1-14

DOI: 10.1007/s10856-021-06514-w

Google Scholar

[40] A. Doostmohammadi, A. Monshi, R. Salehi, M. H. Fathi, S. Karbasi, U. Pieles, A. U. Daniels, Preparation, chemistry and physical properties of bone-derived hydroxyapatite particles having a negative zeta potential. Materials Chemistry and Physics. 132.2-3(2012), pp.446-452

DOI: 10.1016/j.matchemphys.2011.11.051

Google Scholar

[41] H. Lee, G. Kim, Three-dimensional plotted PCL/β-TCP scaffolds coated with a collagen layer: preparation, physical properties and in vitro evaluation for bone tissue regeneration. Journal of Materials Chemistry. 21.17(2011), pp.6305-6312

DOI: 10.1039/c0jm03414b

Google Scholar

[42] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 27.15(2006), pp.2907-2915

DOI: 10.1016/j.biomaterials.2006.01.017

Google Scholar

[43] C. Kwok, P. Wong, F. Cheng, H. Man, Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition. Applied surface science. 255.13-14(2009), pp.6736-6744

DOI: 10.1016/j.apsusc.2009.02.086

Google Scholar

[44] A. Hoppe, N. S. Guldal, A. R. Boccaccini, A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 32.11(2011): 2757-74

DOI: 10.1016/j.biomaterials.2011.01.004

Google Scholar

[45] G. Manivasagam, D. Durgalakshmi, R. Asokamani, Biomedical implants: corrosion and its prevention-a review. Recent patents on corrosion science 2, no. 1 (2010).

DOI: 10.2174/1877610801002010040

Google Scholar

[46] S. Nijhawan, P. Bali, V. Gupta, An overview of the effect of topographic surface modifications of endosteal implants on bone performance and bone implant responses. International Journal of Oral Implantology & Clinical Research. 1.2(2010): 77-82

DOI: 10.5005/jp-journals-10012-1012

Google Scholar

[47] A. Mochizuki, H. Kaneda, Study on the blood compatibility and biodegradation properties of magnesium alloys. Mater Sci Eng C Mater Biol Appl. 47(2015), pp.204-10

Google Scholar

[48] A. J. T. Kand, F. Afaghi, A. T. Tabrizi, H. Aghajani, H. D. Kivrak, Electrochemical evaluation of the hydroxyapatite coating synthesized on the AZ91 by electrophoretic deposition route. Synthesis and Sintering, 1.2(2021), pp.85-91

DOI: 10.53063/synsint.2021.1226

Google Scholar

[49] L. Gramiccioni, G. Ingrao, M. R. Milana, P. Santaroni, G. Tomassi, Aluminium levels in Italian diets and in selected foods from aluminium utensils. Food Additives & Contaminants, 13(7) (1996), pp.767-774

DOI: 10.1080/02652039609374464

Google Scholar

[50] H. Tapiero, K. D. Tew, Trace elements in human physiology and pathology: zinc and metallothioneins. Biomedicine & Pharmacotherapy. 57.9(2003), pp.399-411

DOI: 10.1016/s0753-3322(03)00081-7

Google Scholar

[51] G. Kaur, O. P. Pandey, K. Singh, D. Homa, B. Scott, G. Pickrell, A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. J Biomed Mater Res A. 102.1(2014), pp.254-74

DOI: 10.1002/jbm.a.34690

Google Scholar