[1]
Q. Liao, W. Hu, Q. Le, X. Chen, Y. Jiang, Improvement of Yield Asymmetry and Enhancement of Mechanical Properties of Extruded AZ110 Alloy with La-Rich Misch Metal Addition. Metals and Materials International, (2023), pp.1-14.
DOI: 10.1007/s12540-021-00978-9
Google Scholar
[2]
D. Gu, J. Peng, J. Wang, F. Pan, Effect of Mn modification on microstructure and mechanical properties of magnesium alloy with low Gd content. Metals and Materials International, 27.6 (2021), pp.1483-1492.
DOI: 10.1007/s12540-019-00588-6
Google Scholar
[3]
E. Maleki, F. Shahri, M. Emamy, Microstructure and tensile properties of Mg–5Zn alloy containing Ca. Metals and Materials International, 27.6(2021), pp.1565-1577.
DOI: 10.1007/s12540-019-00530-w
Google Scholar
[4]
C. Tang, K. Wu, W. Liu, D. Feng, G. Zuo, W. Liang, Y. Yang, X. Chen, Q. Li, X. Liu, Dynamic Compression Behavior of a Mg–Gd-Based Alloy at Elevated Temperature. Metals and Materials International, 27.6(2021), pp.1438-1447.
DOI: 10.1007/s12540-019-00558-y
Google Scholar
[5]
T.O. Sadiq, B. A. Hameed, J. Idris, O. Olaoye, S. Nursyaza, Z. H. Samsudin, M. 1. Hasnan, Effect of different machining parameters on surface roughness of aluminium alloys based on Si and Mg content. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41.10 (2021), pp.1-11.
DOI: 10.1007/s40430-019-1948-8
Google Scholar
[6]
A. H M. Sanchez, B. J. Luthringer, F. Feyerabend, R. Willumeit, Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? A review. Acta Biomater, 13(2015), pp.16-31.
DOI: 10.1016/j.actbio.2014.11.048
Google Scholar
[7]
J. Han, P. Wan, Y. Sun, Z. Liu, X. Fan, L. Tan, K. Yang, Fabrication and evaluation of a bioactive Sr–Ca–P contained micro-arc oxidation coating on magnesium strontium alloy for bone repair application. Journal of Materials Science & Technology, 32.3(2016), pp.233-244
DOI: 10.1016/j.jmst.2015.11.012
Google Scholar
[8]
S. Khamseh, S. M. Ganjaee, E. Alibakhshi, M. Nemati, Hydrogen-free Cu: Amorphous-C: N Coating on TC4 Titanium Alloy: The Role of Gas Ratio on Mechanical and Antibacterial Potency. Progress in Color, Colorants and Coatings, 14.4(2021a), pp.281-291
Google Scholar
[9]
G. Wu, P. Li, H. Feng, X. Zhang, P. K. Chu, Engineering and functionalization of biomaterials via surface modification. J. Mater. Chem. B. 3.10(2015), pp.2024-2042
DOI: 10.1039/c4tb01934b
Google Scholar
[10]
A. Cem, A. Serhat, D. Serap, Examination of coating parameters of biopolymer coating on AZ91D magnesium alloy used as implant in human, Metal, (2015).
Google Scholar
[11]
S. Khamseh, E. Alibakhshi, B. Ramezanzadeh, M. G. Sari, A tailored pulsed substrate bias voltage deposited (aC: Nb) thin-film coating on GTD-450 stainless steel: Enhancing mechanical and corrosion protection characteristics. Chemical Engineering Journal, 404 (2021b), p.126490
DOI: 10.1016/j.cej.2020.126490
Google Scholar
[12]
S. Kunjukunju, A. Roy, M. Ramanathan, B. Lee, J. E. Candiello, P. N. Kumta, A layer-by-layer approach to natural polymer-derived bioactive coatings on magnesium alloys. Acta Biomater. 9.10 (2013), pp.8690-703
DOI: 10.1016/j.actbio.2013.05.013
Google Scholar
[13]
M. Daroonparvar, M. A. M. Yajid, N. M. Yusof, H. R. Bakhsheshi-Rad, Fabrication and properties of triplex NiCrAlY/nano Al2O3·13%TiO2/nano TiO2 coatings on a magnesium alloy by atmospheric plasma spraying method. Journal of Alloys and Compounds. 645(2015a), pp.450-466
DOI: 10.1016/j.jallcom.2015.05.106
Google Scholar
[14]
X. Li, Z. Weng, W. Yuan, X. Luo, H. M. Wong, X. Liu, S. Wu, K. W. K. Yeung, Y. Zheng, P. K. Chu, Corrosion resistance of dicalcium phosphate dihydrate/poly (lactic-co-glycolic acid) hybrid coating on AZ31 magnesium alloy. Corrosion Science. 102(2016), pp.209-221
DOI: 10.1016/j.corsci.2015.10.010
Google Scholar
[15]
H.B. Chen, T. M. Liu, L. W. Lu, J.J. He, Y. B. Zhai, Influence of pre-strain and heat treatment on subsequent deformation behavior of extruded AZ31 Mg alloy. Trans. Nonferrous Met. Soc. China. 25(2015), p.3604−3610
DOI: 10.1016/s1003-6326(15)64001-8
Google Scholar
[16]
B. Liu, X. Zhang, G. Y. Xiao, Y. P. Lu, Phosphate chemical conversion coatings on metallic substrates for biomedical application: a review. Mater Sci Eng C Mater Biol Appl. 47 (2015), pp.97-104
DOI: 10.1016/j.msec.2014.11.038
Google Scholar
[17]
M. Razavi, M. Fathi, O. Savabi, D. Vashaee, L. Tayebi, In vivo assessments of bioabsorbable AZ91 magnesium implants coated with nanostructured fluoridated hydroxyapatite by MAO/EPD technique for biomedical applications. Mater Sci Eng C Mater Biol Appl. 48 (2015), pp, 21-7
DOI: 10.1016/j.msec.2014.11.020
Google Scholar
[18]
R. Rojaee, M. Fathi, K. Raeissi, M. Taherian, Electrophoretic deposition of bioactive glass nanopowders on magnesium-based alloy for biomedical applications. Ceramics International. 40.6 (2014b), pp.7879-7888
DOI: 10.1016/j.ceramint.2013.12.135
Google Scholar
[19]
F. Cao, G. L. Song, A. Atrens, Corrosion and passivation of magnesium alloys. Corrosion Science. 111(2016), pp.835-845
DOI: 10.1016/j.corsci.2016.05.041
Google Scholar
[20]
F. Lu, A. Ma, J. Jiang, Y. Guo, D. Yang, D. Song, J. Chen, Significantly improved corrosion resistance of heat-treated Mg–Al–Gd alloy containing profuse needle-like precipitates within grains. Corrosion Science. 94(2015a), pp.171-178
DOI: 10.1016/j.corsci.2015.01.052
Google Scholar
[21]
Y. Lu, A. Bradshaw, Y. Chiu, I. Jones, Effects of secondary phase and grain size on the corrosion of biodegradable Mg–Zn–Ca alloys. Materials Science and Engineering: C. 48(2015b), pp.480-486.
DOI: 10.1016/j.msec.2014.12.049
Google Scholar
[22]
D. Orlov, K. Ralston, N. Birbilis, Y. Estrin, Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing. Acta Materialia. 59.15 (2011), pp.6176-6186
DOI: 10.1016/j.actamat.2011.06.033
Google Scholar
[23]
T. Arahira, M. Maruta, S. Matsuya, Characterization and in vitro evaluation of biphasic alpha-tricalcium phosphate/beta-tricalcium phosphate cement. Mater Sci Eng C Mater Biol Appl. 74(2017), pp.478-484
DOI: 10.1016/j.msec.2016.12.049
Google Scholar
[24]
O. Yigit, B. Dikici, T. C. Senocak, N. Ozdemir, One-step synthesis of nano-hydroxyapatite/graphene nanosheet hybrid coatings on Ti6Al4V alloys by hydrothermal method and their in-vitro corrosion responses. Surface and Coatings Technology, 394(2020), p.125858
DOI: 10.1016/j.surfcoat.2020.125858
Google Scholar
[25]
T. O. Sadiq, N. Siti, J. Idris, A Study of Strontium-Doped Calcium Phosphate Coated on Ti6Al4V Using Microwave Energy. Journal of Bio-and Tribo-Corrosion. 4.3(2018): 40
DOI: 10.1007/s40735-018-0149-9
Google Scholar
[26]
M. E. Iskandar, A. Aslani, H. Liu, The effects of nanostructured hydroxyapatite coating on the biodegradation and cytocompatibility of magnesium implants. Journal of Biomedical Materials Research Part A. 101.8(2013), pp.2340-2354
DOI: 10.1002/jbm.a.34530
Google Scholar
[27]
P. Amaravathy, S. Sathyanarayanan, S. Sowndarya, N. Rajendran, Bioactive HA/TiO2 coating on magnesium alloy for biomedical applications. Ceramics International. 40.5(2014), pp.6617-6630
DOI: 10.1016/j.ceramint.2013.11.119
Google Scholar
[28]
T. O. Sadiq, S. Izman, J. Idris, N. A. Fadil, Synthesis Techniques of Bioceramic Hydroxyapatite for Biomedical Applications, Journal of Biomimetics, Biomaterials and Biomedical Engineering, vol. 59(2023), pp.59-80.
DOI: 10.4028/p-yqw75e
Google Scholar
[29]
T. O. Sadiq, L. M. Daud, J. Idris, Investigation of microstructure and mechanical properties of A335 P11 main steam pipe in Stesen Janaelektrik Jambatan Connaught power plant, Malaysia, Trans. Indian Inst. Met. 71.10 (2018), p.2527–2540
DOI: 10.1007/s12666-018-1383-z
Google Scholar
[30]
T. O. Sadiq, J. Idris, I. Mohammad, A. Mohd Zamani, Effect of Homogenization Annealing and Hydroxyapatite Coating sing EPD Technique on Magnesium Alloy for Orthopedic Applications. Proceedings of the Eighth Intl. Conf. on Advances in Civil, Structural and Mechanical Engineering - CSM, (2019), page 71-74, 23-24 April, Birmingham, United Kingdom.
Google Scholar
[31]
S. T. Olohunde, A. M. Hafzi, I. Jamaliah, A. A. Al-Bakoosh, O. O. Segun, I. O. Sadiq, Corrosion resistance of aluminium-silicon hypereutectic alloy from scrap metal. J Bio Tribo Corros 5.2 (2019), p.41
DOI: 10.1007/s40735-019-0224-x
Google Scholar
[32]
M. Instruments, Zetasizer Nano Series User Manual, Malvern Instruments Ltd, Worcs, (2004)
Google Scholar
[33]
G. Song, A. Atrens, M. Dargusch, Influence of microstructure on the corrosion of diecast AZ91D. Corrosion science. 41.2(1998), pp.249-273.
DOI: 10.1016/s0010-938x(98)00121-8
Google Scholar
[34]
M. H. Fathi, M. A. H. D. I. Salehi, A. Saatchi, V. Mortazavi, S. B. Moosavi, In vitro corrosion behavior of bioceramic, metallic, and bioceramic–metallic coated stainless steel dental implants. Dental materials, 19.3(2003), pp.188-198.
DOI: 10.1016/s0109-5641(02)00029-5
Google Scholar
[35]
G. R. Ebrahimi, A. R. Maldar, R. Ebrahimi, A. Davoodi, The effect of homogenization on microstructure and hot ductility behaviour of AZ91 magnesium alloy. Kovove Mater, 48 (2010), pp.277-284
DOI: 10.4149/km_2010_5_277
Google Scholar
[36]
J. Chen, J. Wang, E. Han, J. Dong, W. Ke, States and transport of hydrogen in the corrosion process of an AZ91 magnesium alloy in aqueous solution. Corrosion Science, 50.5(2008), pp.1292-1305
DOI: 10.1016/j.corsci.2008.01.028
Google Scholar
[37]
W. Zhou, N. Aung, A. Choudhary, M. Kanouni, Evaluation of corrosion resistance of magnesium alloys in radiator coolants. Corrosion Engineering, Science and Technology. 46.4(2011): 386-391
DOI: 10.1179/174327809x409187
Google Scholar
[38]
L. Zheng, H. Nie, W. Liang, H. Wang, Y. Wang, Effect of pre-homogenizing treatment on microstructure and mechanical properties of hot-rolled AZ91 magnesium alloys. Journal of Magnesium and Alloys. 4.2(2016), pp.115-122
DOI: 10.1016/j.jma.2016.04.002
Google Scholar
[39]
O. Yigit, B. Dikici, N. Ozdemir, Hydrothermal synthesis of nanocrystalline hydroxyapatite–graphene nanosheet on Ti-6Al-7Nb: mechanical and in vitro corrosion performance. Journal of Materials Science: Materials in Medicine, 32.4(2021), pp.1-14
DOI: 10.1007/s10856-021-06514-w
Google Scholar
[40]
A. Doostmohammadi, A. Monshi, R. Salehi, M. H. Fathi, S. Karbasi, U. Pieles, A. U. Daniels, Preparation, chemistry and physical properties of bone-derived hydroxyapatite particles having a negative zeta potential. Materials Chemistry and Physics. 132.2-3(2012), pp.446-452
DOI: 10.1016/j.matchemphys.2011.11.051
Google Scholar
[41]
H. Lee, G. Kim, Three-dimensional plotted PCL/β-TCP scaffolds coated with a collagen layer: preparation, physical properties and in vitro evaluation for bone tissue regeneration. Journal of Materials Chemistry. 21.17(2011), pp.6305-6312
DOI: 10.1039/c0jm03414b
Google Scholar
[42]
T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 27.15(2006), pp.2907-2915
DOI: 10.1016/j.biomaterials.2006.01.017
Google Scholar
[43]
C. Kwok, P. Wong, F. Cheng, H. Man, Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition. Applied surface science. 255.13-14(2009), pp.6736-6744
DOI: 10.1016/j.apsusc.2009.02.086
Google Scholar
[44]
A. Hoppe, N. S. Guldal, A. R. Boccaccini, A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 32.11(2011): 2757-74
DOI: 10.1016/j.biomaterials.2011.01.004
Google Scholar
[45]
G. Manivasagam, D. Durgalakshmi, R. Asokamani, Biomedical implants: corrosion and its prevention-a review. Recent patents on corrosion science 2, no. 1 (2010).
DOI: 10.2174/1877610801002010040
Google Scholar
[46]
S. Nijhawan, P. Bali, V. Gupta, An overview of the effect of topographic surface modifications of endosteal implants on bone performance and bone implant responses. International Journal of Oral Implantology & Clinical Research. 1.2(2010): 77-82
DOI: 10.5005/jp-journals-10012-1012
Google Scholar
[47]
A. Mochizuki, H. Kaneda, Study on the blood compatibility and biodegradation properties of magnesium alloys. Mater Sci Eng C Mater Biol Appl. 47(2015), pp.204-10
Google Scholar
[48]
A. J. T. Kand, F. Afaghi, A. T. Tabrizi, H. Aghajani, H. D. Kivrak, Electrochemical evaluation of the hydroxyapatite coating synthesized on the AZ91 by electrophoretic deposition route. Synthesis and Sintering, 1.2(2021), pp.85-91
DOI: 10.53063/synsint.2021.1226
Google Scholar
[49]
L. Gramiccioni, G. Ingrao, M. R. Milana, P. Santaroni, G. Tomassi, Aluminium levels in Italian diets and in selected foods from aluminium utensils. Food Additives & Contaminants, 13(7) (1996), pp.767-774
DOI: 10.1080/02652039609374464
Google Scholar
[50]
H. Tapiero, K. D. Tew, Trace elements in human physiology and pathology: zinc and metallothioneins. Biomedicine & Pharmacotherapy. 57.9(2003), pp.399-411
DOI: 10.1016/s0753-3322(03)00081-7
Google Scholar
[51]
G. Kaur, O. P. Pandey, K. Singh, D. Homa, B. Scott, G. Pickrell, A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. J Biomed Mater Res A. 102.1(2014), pp.254-74
DOI: 10.1002/jbm.a.34690
Google Scholar