[1]
N. Tran, U. P. Rodriguez, C. Y. Chan, M. J. Phillips, C. V. Mohan, P. J. G. Henriksson, S. Koeshendrajana, S. Suri, S. Hall, Indonesian Aquaculture Futures: An Analysis of Fish Supply and Demand in Indonesia to 2030 and Role of Aquaculture Using the AsiaFish Model, Marine Policy. 79 (2017) 25-32.
DOI: 10.1016/j.marpol.2017.02.002
Google Scholar
[2]
[FAO] Food and Agriculture Organization of the United Nations, The state of world fisheries and aquaculture, Sustainability in action, Food and Agriculture Organization of the United Nations, Rome (2020).
DOI: 10.18356/0170ea0f-en
Google Scholar
[3]
S. Putra, A. Arianto, E. Efendi, Q. Hasani, H. Yulianto, Effectiveness of Freshwater Kijing (Pilsbryoconcha exilis) as Biofilter in Recirculation System on Ammonia Absorption Rate and Growth of Sangkuriang Catfish (Clarias gariepinus), Journal of Aquaculture Engineering and Technology. 4 (2016) 497-506.
Google Scholar
[4]
S.W. Nixon, Coastal marine eutrophication – a definition social causes, and future concerns., Ophelia, 1995.
DOI: 10.1080/00785236.1995.10422044
Google Scholar
[5]
T. Yamamoto, The Seto Inland Sea-eutrophic or oligotrophic, Mar. Pollut. Bull. 47 (2003) 37-42.
Google Scholar
[6]
C. R. Frink, Nutrient budget: rational analysis of eutrophication in a connecticut lake, Environ. Sci. Technol. 1 (1967) 425-428.
DOI: 10.1021/es60005a008
Google Scholar
[7]
R. D. Utari, M. Masykuri, R. Retno. Bioremediation Using Chelator Agents Agrobacterium Sp . I 26 and Manure to Support Environment Friendly and Healthy Agriculture Bioremediation Using Chelator Agents Agrobacterium sp . Healthy Agriculture, International Conference on Science and Applied Science (ICSAS) (2018) 1-8.
DOI: 10.1063/1.5054424
Google Scholar
[8]
Yuka, R. Ajizah, A. Setyawan, S. Supono. Identification of Total Ammonia Nitrogen (TAN) Degrading Bioremediation Bacteria, Marine Journal: Indonesian Journal of Marine Science and Technology. 14 (2021): 20-29.
DOI: 10.21107/jk.v14i1.8499
Google Scholar
[9]
S. H. Chang, C. H. Wu, R. C. Wang, C.W. Lin, Electricity production and benzene removal from groundwater using low-cost mini tubular microbial fuel cells in a monitoring well, J. Environmental Management. 193 (2017) 551-557.
DOI: 10.1016/j.jenvman.2017.02.053
Google Scholar
[10]
Rakoczy, J. Feisthauer, S. Wasmund, K. Bombach, P. Neu, T. R. Vogt, C. Richnow, H. H., Benzene and sulfide removal from groundwater treated in a microbial fuel cell, Biotechnology & Bioengineering. 110 (2013) 3104-3113.
DOI: 10.1002/bit.24979
Google Scholar
[11]
Deng, Qiujin, C. Su, X. Lu, W. Chen, X. Guan, S. Chen, M. Chen, Performance and Functional Microbial Communities of Denitrification Process of a Novel MFC-Granular Sludge Coupling System, Bioresource Technology. 306 (2020) 123-173.
DOI: 10.1016/j.biortech.2020.123173
Google Scholar
[12]
Barelli, Linda, G. Bidini, G. Cinti, H. H. Zhang, L. Wang, J. Van, F. Mar, The Effect of External Resistance and The Addition Of Molasses In Lapindo Mud To Generate Bioelectricity Using Microbial Fuel Cells, Energies. 6 (2018) 1-8.
Google Scholar
[13]
M. F. Umar, M. Rafatullah, S. Z. Abbas, M. N. M. Ibrahim, N. Ismail, Enchanced Benzene Bioremediation and Power Generation by Double Chamber Benthic Microbial Fuel Cells Fed with Sugarcane Waste as a Substrate, Journal of Cleaner Production, 310 (2021).
DOI: 10.1016/j.jclepro.2021.127583
Google Scholar
[14]
A. Almatouq, G. Webster, A. Babatunde, Silver Removal and Microbial Community Structure in Microbial Fuel Cells, Journal of Chemical Technology and Biotechnology. 97 (2022): 3441-3452.
DOI: 10.1002/jctb.7204
Google Scholar
[15]
M. Sherafatmand, H. Yong, Using Sediment Microbial Fuel Cells (SMFCs) for Bioremediation of Polycyclic Aromatic Hydrocarbons (PAHs), Bioresource Technology. 195 (2015) 122-130.
DOI: 10.1016/j.biortech.2015.06.002
Google Scholar
[16]
X. Zhang, Z. Feng, C. Li, Z. Xin, T. Guanhon, Removal of Ammonia Nitrogen from Wastewater Using an Aerobic Cathode Microbial Fuel Cell, Bioresource Technology. 146 (2013) 161-168.
DOI: 10.1016/j.biortech.2013.07.024
Google Scholar
[17]
Z. Yifeng, Energy Recovery from Waste Streams with Microbial Fuel, Departement of Environmental Engineering (2012).
Google Scholar
[18]
T. D. K. Pribadi, Y. N. Ihsan, K. Fellatami, R. R. P. Syamsuri, B. Koswara, Microbial Fuel Cell: Sustainable Approach for Reservoir Eutrophication, Asian Journal of Water, Environment and Pollution. 16 (2019) 1-8.
DOI: 10.3233/ajw190001
Google Scholar
[19]
J. M. Ebeling, M. B. Timmons, J. J. Bisogni, Engineering Analysis of the Stoichiometry of Photoautotrophic, Autotrophic, and Heterotrophic Removal of Ammonia–Nitrogen in Aquaculture Systems, Aquaculture. 257 (2006) 346-58.
DOI: 10.1016/j.aquaculture.2006.03.019
Google Scholar
[20]
A. B. Dauda, A. Abdullateef, S. T. Adenike, O. Ayola, Waste Production in Aquaculture: Sources, components and managements in different culture systems, Aquaculture and Fisheries. 4 (2019) 81-88.
DOI: 10.1016/j.aaf.2018.10.002
Google Scholar
[21]
Larrosa-Guerrero, Amor, K. Scott, K. P. Katuri, C. Godinez, I. M. Head, T. Curtis, Open Circuit versus Closed Circuit Enrichment of Anodic Biofilms in MFC: Effect on Performance and Anodic Communities, Applied Microbiology and Biotechnology. 87 (2010) 1699-1713.
DOI: 10.1007/s00253-010-2624-1
Google Scholar
[22]
K. P. Nevin, H. Richter, S. F. Covalla, J. P. Johnson, T. L. Woodard, A. L. Orloff, H. Jia, M. Zhang, D. R. Lovley, Power Output and Columbic Efficiencies from Biofilms of Geobacter Sulfurreducens Comparable to Mixed Community Microbial Fuel Cells, Environmental Microbiology. 10 (2008): 05–14.
DOI: 10.1111/j.1462-2920.2008.01675.x
Google Scholar
[23]
K. J. Chae, M. J. Choi, J. W. Lee, K. Y. Kim, I. S. Kim, Effect of Different Substrates on the Performance, Bacterial Diversity, and Bacterial Viability in Microbial Fuel Cells, Bioresource Technology. 100 (2009): 18–25.
DOI: 10.1016/j.biortech.2009.02.065
Google Scholar
[24]
C. N. Chang, H. B. Cheng, A. C. Chao, Applying the Nernst equation to simulate redox potential variations for biological nitrification and denitrification processes, Environ. Sci. Technol. 38 (2004) 1807-1812.
DOI: 10.1021/es021088e
Google Scholar
[25]
M. R. Beylier, M. D. Balaguer, J. Colprim., C. P. Nacher, B. J. Ni, B. F. Smets, S. P. Sun, R. C. Wang, Biological Nitrogen Removal from Domestic Wastewater, Comprehensive Biotehcnology, Second Edition. 6 (2011) 329-340.
DOI: 10.1016/b978-0-08-088504-9.00533-x
Google Scholar