[1]
J-P. Pons, F. Segonne, J-D. Boissonnat, L. Rineau, M. Yvinec, R. Keriven (2007).
Google Scholar
[2]
C. Gabriel, S. Gabriel, & E. Corthout (1996). The dielectric properties of biological tissues: I. Literature survey. Physics in Medicine and Biology, 41 (11), 2231– 2249.
DOI: 10.1088/0031-9155/41/11/001
Google Scholar
[3]
C.E. Miller, C.S. Henriquez (1990) Finite element analysis of bioelectric phenomena. Biomedical Engineering, 18(3): 207 – 233.
Google Scholar
[4]
N. Siauve, R. Scorretti, N. Burais, L. Nicolas, & A. Nicolas (2003).
Google Scholar
[5]
G. Scarella, O. Clatz, S. Lanteri, G. Beaume, S. Oudot, J-P. Pons, et al. (2006). Realistic numerical modelling of human head tissue exposure to electromagnetic waves from cellular phones. Comptes Rendus Physique, 7(5): 501 – 508.
DOI: 10.1016/j.crhy.2006.03.002
Google Scholar
[6]
S. Crozier (2007). An investigation into occupational exposure to electromagnetic fields for personnel working with and around magnetic resonance imaging equipment. United Kingdom: Health and Safety Executive.
Google Scholar
[7]
R.L. McIntosh, S. Iskra, R.J. McKensie, J. Chambers, B. Metzenthen, & V. Anderson (2008). Assessment of SAR and thermal chanages near a Cochlear implant system for mobile phone type exposures. Bioelectromagnetics 29(1): 71 – 80.
DOI: 10.1002/bem.20364
Google Scholar
[8]
F. Darvas, D. Pantazia, E. Kucukaltun-Yildirim, R.M. Leahy (2004). Mapping human brain function with MEG and EEG: methods and validation. Neuroimage, 23: S289 – S299.
DOI: 10.1016/j.neuroimage.2004.07.014
Google Scholar
[9]
D. Weinstein, L. Zhukov, C. Johnson (2000). Lead-field bases for electroencephalography source imaging. Annals of Biomedical Engineering 28(9): 1059 – 1065.
DOI: 10.1114/1.1310220
Google Scholar
[10]
S. Lew, C.H. Wolters, A. Anwander, S. Makeig, R.S. MacLeod (2009). Improved EEG source analysis using low-resolution conductivity estimation in a four-compartment finite element head model. Human Brain Mapping, 30(9): 2862 – 78.
DOI: 10.1002/hbm.20714
Google Scholar
[11]
Y. Wang, D.R. Haynor, Y. Kim (2001).
Google Scholar
[12]
J.H. Frijns, R.K. Kalkman, J.J. Briaire (2009). Stimulation of the facial nerve by intracochlear electrodes in otosclerosis: a computer modelling study. Otol Neurotol, 30 (8): 1168 – 1174.
DOI: 10.1097/mao.0b013e3181b12115
Google Scholar
[13]
A.G. Micco, & C.P. Richter (2006). Tissue resistivities determine the current flow in the cochlea. Curr Opin Otolaryngol Head Neck Surg, 14 (5): 352 –5.
DOI: 10.1097/01.moo.0000244195.04926.a0
Google Scholar
[14]
D.S. Tuch, V.J. Wedeen, A.M. Dale, & J.W. Belliveau (1998). Electrical conductivity tensor mapping of the human brain using NMR diffusion imaging: an effective medium approach. Proceedings ISMRM, 6: 572.
Google Scholar
[15]
D.S. Tuch, V.J. Wedeen, A.M. Dale, J.S. George, J.W. Belliveau,. Conductivity mapping of biological tissue using diffusion MRI. Ann NY Acad Sci, (1999) 888: 314 – 316.
DOI: 10.1111/j.1749-6632.1999.tb07965.x
Google Scholar
[16]
D.S. Tuch, V.J. Wedeen, A.M. Dale, J.S. George, J.W. Belliveau. Conductivity tensor mapping of the human brain using diffusion tensor MRI. PNAS (2001), 98 (20): 11697–701.
DOI: 10.1073/pnas.171473898
Google Scholar
[17]
P.B. Kingsley (2005) Introduction to diffusion tensor imaging mathematics: part II. anisotropy, diffusion-weighting factors, and gradient encoding schemes. Concepts in Magnetic Resonance Part A, 28A(2): 123–54.
DOI: 10.1002/cmr.a.20049
Google Scholar
[18]
J.L. Andersson, C. Hutton, J. Ashburner, R. Turner, K. Friston. (2001). Modeling geometric deformations in EPI time series. Neuroimage , 13(5): 903–19.
DOI: 10.1006/nimg.2001.0746
Google Scholar
[19]
P. Mukherjee, S.W. Chung, J.J. Berman, C.P. Hess, R.G. Henry. (2008). Diffusion tensor MR imaging and fiber tractography: technical considerations. A J Neurorad Res, 29(5): 843–52.
DOI: 10.3174/ajnr.a1052
Google Scholar
[20]
D.L. Hill, P.G. Batchelor, M. Holden, D.J. Hawkes. (2001). Medical image registration. Phys. Med. Biol., 46 (3): R1 – R45.
DOI: 10.1088/0031-9155/46/3/201
Google Scholar
[21]
B. Zitova, J. Flusser, (2003). Image registration methods: a survey. Image Vision Comput, 21: 977 – 1000.
DOI: 10.1016/s0262-8856(03)00137-9
Google Scholar
[22]
J. Modersitzki, (2004). Numerical methods for image registration. Oxford University Press.
Google Scholar
[23]
X. Wang, S. Eberl, M. Fulham, S. Som, D.D. Feng, (2008). Data registration and fusion. In D. D. Feng, Biomedical information technology. Elsevier Publishing, 187 – 210.
DOI: 10.1016/b978-012373583-6.50012-8
Google Scholar
[24]
B. Fischer, J. Modersitzki. (2008). Ill-posed medicine - an introduction to image registration. Inverse Problems, 24 (3): 34008–23.
DOI: 10.1088/0266-5611/24/3/034008
Google Scholar
[25]
D.C. Alexander, C. Pierpaoli, P.J. Basser, J.C. Gee. (2001). Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans. Med Imag. , 20 (11): 1131–9.
DOI: 10.1109/42.963816
Google Scholar
[26]
D. Merhof, P. Hastreiter, G. Soza, M. Stamminger, C. Nimsky. (2004).
Google Scholar
[27]
D. Merhof, G. Soza, A. Stadlbauer, G. Greiner, C. Nimsky. (2007). Correction of susceptibility artifacts in diffusion tensor data using non-linear registration. Med Im Anal , 11 (6): 588–603.
DOI: 10.1016/j.media.2007.05.004
Google Scholar
[28]
S. Ardekani, U. Sinha. (2005). Geometric distortion correction of high-resolution 3T diffusion tensor brain images. Magnetic Resonance in Medicine , 54 (5): 1163–71.
DOI: 10.1002/mrm.20651
Google Scholar
[29]
H. Zhang, P.A. Yushkevich, D.C. Alexander, J.C. Gee. (2006). Deformable registration of diffusion tensor MR images with explicit orientation optimization. Medical Image Analysis, 10 (5): 764–85.
DOI: 10.1016/j.media.2006.06.004
Google Scholar
[30]
H. Zhang, P.A. Yushkevich, J.C. Gee. (2004). Registration of diffusion tensor images. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, p.842–847.
DOI: 10.1109/cvpr.2004.1315119
Google Scholar
[31]
W. Van Hecke, A. Leemans, E. D'Agostino, S. De Backer, E. Vandervliet, P.M. Prizel, J. Sijbers. (2007).
Google Scholar
[32]
Y. Li, N. Xu, M.J. Fitzpatrick, B.M. Dawant. (2008). Geometric distortion correction for echo planar images using nonrigid registration with spatially varying scale. Magnetic Resonance Imaging, 26 (10): 1388–97.
DOI: 10.1016/j.mri.2008.03.004
Google Scholar
[33]
T.J.C. Faes, H.A. van der Meij, J.C. de Munck, R.M. Heethaar. (1999). The electric resistivity of human tissues (100Hz-10MHz): a meta-analysis of review studies. Physiol. Meas., 20 (4): R1–R10.
DOI: 10.1088/0967-3334/20/4/201
Google Scholar
[34]
S. Gabriel, R.W. Lau, C. Gabriel. (1996). The dielectric properties of biological tissues: II. Measurements in the frequency range of 10Hz to 20GHz. Phys. Med. Biol., 41 (11), 2251–69.
DOI: 10.1088/0031-9155/41/11/002
Google Scholar
[35]
S. Gabriel, R.W. Lau, C. Gabriel. (1996). The dielectric properties of biological tissues: III. Parametric models of the dielectric spectrum of tissues. Phys. Med. Biol., 2271–93.
DOI: 10.1088/0031-9155/41/11/003
Google Scholar
[36]
D. Andreuccetti, R. Fossi, C. Petrucci. (1997). An internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10Hz-100GHz. Retrieved from http: /niremf. ifac. cnr. it/tissprop.
Google Scholar
[37]
S.J. Owen. (1998) A survey of unstructured mesh generation technology. Proceedings, 7th International Meshing Roundtable, Sandia National Lab, October 1998, 3 (6): 239–67.
Google Scholar
[38]
P.G. Young, T.B. Beresford-West, S.R. Coward, B. Notarberardino, B. Walker, A. Abdul-Aziz. (2008).
Google Scholar
[39]
P.B. Kingsley. (2005) Introduction to diffusion tensor imaging mathematics: part I. tensors, rotations, and eigenvectors. Concepts in Magnetic Resonance Part A, 28A(2): 101–22.
DOI: 10.1002/cmr.a.20048
Google Scholar