Subject Specific Modelling of Electrical Conduction in the Body: A Case Study

Article Preview

Abstract:

Modelling of bioelectric phenomena in the human body poses unique problems compared to those encountered in other fields of engineering. Accurate definition of the physical domain and material properties is difficult due to geometrical complexity and uncertainty in tissue characterisation. A workflow is presented for finite element simulation of electric current in the body. This is illustrated through an application on a subject-specific cranial model for simulation of a cochlear implant. Operations required for the full workflow include: data acquisition, image registration and segmentation, material property assignment, numerical analysis, and visualisation. The case study described uses MRI imaging and diffusion tensor MRI for definition of the analysis domain and material properties with analysis conducted in ANSYS. Image registration and segmentation were accomplished using custom designed algorithms. Visualisation was achieved using a 24-bit red-green-blue colour scheme to represent directional vectors.

You might also be interested in these eBooks

Info:

Pages:

43-53

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J-P. Pons, F. Segonne, J-D. Boissonnat, L. Rineau, M. Yvinec, R. Keriven (2007).

Google Scholar

[2] C. Gabriel, S. Gabriel, & E. Corthout (1996). The dielectric properties of biological tissues: I. Literature survey. Physics in Medicine and Biology, 41 (11), 2231– 2249.

DOI: 10.1088/0031-9155/41/11/001

Google Scholar

[3] C.E. Miller, C.S. Henriquez (1990) Finite element analysis of bioelectric phenomena. Biomedical Engineering, 18(3): 207 – 233.

Google Scholar

[4] N. Siauve, R. Scorretti, N. Burais, L. Nicolas, & A. Nicolas (2003).

Google Scholar

[5] G. Scarella, O. Clatz, S. Lanteri, G. Beaume, S. Oudot, J-P. Pons, et al. (2006). Realistic numerical modelling of human head tissue exposure to electromagnetic waves from cellular phones. Comptes Rendus Physique, 7(5): 501 – 508.

DOI: 10.1016/j.crhy.2006.03.002

Google Scholar

[6] S. Crozier (2007). An investigation into occupational exposure to electromagnetic fields for personnel working with and around magnetic resonance imaging equipment. United Kingdom: Health and Safety Executive.

Google Scholar

[7] R.L. McIntosh, S. Iskra, R.J. McKensie, J. Chambers, B. Metzenthen, & V. Anderson (2008). Assessment of SAR and thermal chanages near a Cochlear implant system for mobile phone type exposures. Bioelectromagnetics 29(1): 71 – 80.

DOI: 10.1002/bem.20364

Google Scholar

[8] F. Darvas, D. Pantazia, E. Kucukaltun-Yildirim, R.M. Leahy (2004). Mapping human brain function with MEG and EEG: methods and validation. Neuroimage, 23: S289 – S299.

DOI: 10.1016/j.neuroimage.2004.07.014

Google Scholar

[9] D. Weinstein, L. Zhukov, C. Johnson (2000). Lead-field bases for electroencephalography source imaging. Annals of Biomedical Engineering 28(9): 1059 – 1065.

DOI: 10.1114/1.1310220

Google Scholar

[10] S. Lew, C.H. Wolters, A. Anwander, S. Makeig, R.S. MacLeod (2009). Improved EEG source analysis using low-resolution conductivity estimation in a four-compartment finite element head model. Human Brain Mapping, 30(9): 2862 – 78.

DOI: 10.1002/hbm.20714

Google Scholar

[11] Y. Wang, D.R. Haynor, Y. Kim (2001).

Google Scholar

[12] J.H. Frijns, R.K. Kalkman, J.J. Briaire (2009). Stimulation of the facial nerve by intracochlear electrodes in otosclerosis: a computer modelling study. Otol Neurotol, 30 (8): 1168 – 1174.

DOI: 10.1097/mao.0b013e3181b12115

Google Scholar

[13] A.G. Micco, & C.P. Richter (2006). Tissue resistivities determine the current flow in the cochlea. Curr Opin Otolaryngol Head Neck Surg, 14 (5): 352 –5.

DOI: 10.1097/01.moo.0000244195.04926.a0

Google Scholar

[14] D.S. Tuch, V.J. Wedeen, A.M. Dale, & J.W. Belliveau (1998). Electrical conductivity tensor mapping of the human brain using NMR diffusion imaging: an effective medium approach. Proceedings ISMRM, 6: 572.

Google Scholar

[15] D.S. Tuch, V.J. Wedeen, A.M. Dale, J.S. George, J.W. Belliveau,. Conductivity mapping of biological tissue using diffusion MRI. Ann NY Acad Sci, (1999) 888: 314 – 316.

DOI: 10.1111/j.1749-6632.1999.tb07965.x

Google Scholar

[16] D.S. Tuch, V.J. Wedeen, A.M. Dale, J.S. George, J.W. Belliveau. Conductivity tensor mapping of the human brain using diffusion tensor MRI. PNAS (2001), 98 (20): 11697–701.

DOI: 10.1073/pnas.171473898

Google Scholar

[17] P.B. Kingsley (2005) Introduction to diffusion tensor imaging mathematics: part II. anisotropy, diffusion-weighting factors, and gradient encoding schemes. Concepts in Magnetic Resonance Part A, 28A(2): 123–54.

DOI: 10.1002/cmr.a.20049

Google Scholar

[18] J.L. Andersson, C. Hutton, J. Ashburner, R. Turner, K. Friston. (2001). Modeling geometric deformations in EPI time series. Neuroimage , 13(5): 903–19.

DOI: 10.1006/nimg.2001.0746

Google Scholar

[19] P. Mukherjee, S.W. Chung, J.J. Berman, C.P. Hess, R.G. Henry. (2008). Diffusion tensor MR imaging and fiber tractography: technical considerations. A J Neurorad Res, 29(5): 843–52.

DOI: 10.3174/ajnr.a1052

Google Scholar

[20] D.L. Hill, P.G. Batchelor, M. Holden, D.J. Hawkes. (2001). Medical image registration. Phys. Med. Biol., 46 (3): R1 – R45.

DOI: 10.1088/0031-9155/46/3/201

Google Scholar

[21] B. Zitova, J. Flusser, (2003). Image registration methods: a survey. Image Vision Comput, 21: 977 – 1000.

DOI: 10.1016/s0262-8856(03)00137-9

Google Scholar

[22] J. Modersitzki, (2004). Numerical methods for image registration. Oxford University Press.

Google Scholar

[23] X. Wang, S. Eberl, M. Fulham, S. Som, D.D. Feng, (2008). Data registration and fusion. In D. D. Feng, Biomedical information technology. Elsevier Publishing, 187 – 210.

DOI: 10.1016/b978-012373583-6.50012-8

Google Scholar

[24] B. Fischer, J. Modersitzki. (2008). Ill-posed medicine - an introduction to image registration. Inverse Problems, 24 (3): 34008–23.

DOI: 10.1088/0266-5611/24/3/034008

Google Scholar

[25] D.C. Alexander, C. Pierpaoli, P.J. Basser, J.C. Gee. (2001). Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans. Med Imag. , 20 (11): 1131–9.

DOI: 10.1109/42.963816

Google Scholar

[26] D. Merhof, P. Hastreiter, G. Soza, M. Stamminger, C. Nimsky. (2004).

Google Scholar

[27] D. Merhof, G. Soza, A. Stadlbauer, G. Greiner, C. Nimsky. (2007). Correction of susceptibility artifacts in diffusion tensor data using non-linear registration. Med Im Anal , 11 (6): 588–603.

DOI: 10.1016/j.media.2007.05.004

Google Scholar

[28] S. Ardekani, U. Sinha. (2005). Geometric distortion correction of high-resolution 3T diffusion tensor brain images. Magnetic Resonance in Medicine , 54 (5): 1163–71.

DOI: 10.1002/mrm.20651

Google Scholar

[29] H. Zhang, P.A. Yushkevich, D.C. Alexander, J.C. Gee. (2006). Deformable registration of diffusion tensor MR images with explicit orientation optimization. Medical Image Analysis, 10 (5): 764–85.

DOI: 10.1016/j.media.2006.06.004

Google Scholar

[30] H. Zhang, P.A. Yushkevich, J.C. Gee. (2004). Registration of diffusion tensor images. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, p.842–847.

DOI: 10.1109/cvpr.2004.1315119

Google Scholar

[31] W. Van Hecke, A. Leemans, E. D'Agostino, S. De Backer, E. Vandervliet, P.M. Prizel, J. Sijbers. (2007).

Google Scholar

[32] Y. Li, N. Xu, M.J. Fitzpatrick, B.M. Dawant. (2008). Geometric distortion correction for echo planar images using nonrigid registration with spatially varying scale. Magnetic Resonance Imaging, 26 (10): 1388–97.

DOI: 10.1016/j.mri.2008.03.004

Google Scholar

[33] T.J.C. Faes, H.A. van der Meij, J.C. de Munck, R.M. Heethaar. (1999). The electric resistivity of human tissues (100Hz-10MHz): a meta-analysis of review studies. Physiol. Meas., 20 (4): R1–R10.

DOI: 10.1088/0967-3334/20/4/201

Google Scholar

[34] S. Gabriel, R.W. Lau, C. Gabriel. (1996). The dielectric properties of biological tissues: II. Measurements in the frequency range of 10Hz to 20GHz. Phys. Med. Biol., 41 (11), 2251–69.

DOI: 10.1088/0031-9155/41/11/002

Google Scholar

[35] S. Gabriel, R.W. Lau, C. Gabriel. (1996). The dielectric properties of biological tissues: III. Parametric models of the dielectric spectrum of tissues. Phys. Med. Biol., 2271–93.

DOI: 10.1088/0031-9155/41/11/003

Google Scholar

[36] D. Andreuccetti, R. Fossi, C. Petrucci. (1997). An internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10Hz-100GHz. Retrieved from http: /niremf. ifac. cnr. it/tissprop.

Google Scholar

[37] S.J. Owen. (1998) A survey of unstructured mesh generation technology. Proceedings, 7th International Meshing Roundtable, Sandia National Lab, October 1998, 3 (6): 239–67.

Google Scholar

[38] P.G. Young, T.B. Beresford-West, S.R. Coward, B. Notarberardino, B. Walker, A. Abdul-Aziz. (2008).

Google Scholar

[39] P.B. Kingsley. (2005) Introduction to diffusion tensor imaging mathematics: part I. tensors, rotations, and eigenvectors. Concepts in Magnetic Resonance Part A, 28A(2): 101–22.

DOI: 10.1002/cmr.a.20048

Google Scholar