Mechanics in Leaf Venation Morphogenesis and their Biomimetic Inspiration to Construct a 2-Dimensional Reinforcement Layout Model

Article Preview

Abstract:

This paper concerns biomimetic exploration of the leaf rib layout problem. Biological venation of organisms is observed to be similar to reinforced plate/shell systems. Similarity analysis makes it clear that dicotyledonous leaves are an ideal research subject. In this paper, global and local regularities are summarized and existing theories on venation morphogenesis are discussed and compared. An energy hypothesis is proposed to cater for interdisciplinary applications. A venation growing model was then used to construct a two-dimensional reinforcement layout model. The biomechanical expressions developed can be an alternative to describe rib-in-plate or fibre-in-composite materials.

You might also be interested in these eBooks

Info:

Pages:

81-93

Citation:

Online since:

May 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Candela, A. Martínez-Laborda, J.L. Micol. Venation Pattern Formation in Arabidopsis thaliana vegetative leaves. Dev Biol., 205(1) 205-16, (1999).

DOI: 10.1006/dbio.1998.9111

Google Scholar

[2] D. Uhl, V. Mosbrugger. Leaf venation density as a climate and environmental proxy: a critical review and new data. Palaeogeography, Palaeoclimatology, Palaeoecology; 149 (1-4), 15-26, (1999).

DOI: 10.1016/s0031-0182(98)00189-8

Google Scholar

[3] U. Kull, A. Herbig. Das Blattadersystem der Angiospermen: Form und Evolution. Naturwissenschaften; 82 (10), 441-51, (1995).

DOI: 10.1007/bf01131595

Google Scholar

[4] J. Chung, K. Lee. Optimal design of rib structures using the topology optimization technique. Proceedings of the Institution of Mechanical Engineers, 211 C, 425-37, (1997).

DOI: 10.1243/0954406971521836

Google Scholar

[5] L.A. Krog, N. Olhoff. Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives. Computers and Structures; 72 (4-5), 535-63, (1999).

DOI: 10.1016/s0045-7949(98)00326-5

Google Scholar

[6] D. Bojczuk and W. Szteleblak. Optimization of layout and shape of stiffeners in 2D structures. Computers and Structures; 86 (13-14), 1436-46, (2008).

DOI: 10.1016/j.compstruc.2007.05.005

Google Scholar

[7] P. Lyaet. Exploration des méthodes d'optimisation pour déterminer la topologie et la forme des renforts de plaque. Thèse l'Université Technologique de Compiègue, (1995).

Google Scholar

[8] A. Kallassy, and J-L. Marcelin. Optimization of stiffened plates by genetic search. Struct Optim; 13 (2-3), 134-41, (1997).

DOI: 10.1007/bf01199232

Google Scholar

[9] X. Ding, K. Yamazaki. Stiffener layout design for plate structures by growing and branching tree model (application to vibration-proof design). Structural Optimization; 26 (1-2) 99-110, (2004).

DOI: 10.1007/s00158-003-0309-4

Google Scholar

[10] X. Ding, J. Lin, K. Yamazaki. Topology design optimization of stiffened thin-wall shell structures based on growth mechanism of root system. Chinese Journal of Mechanical Engineering; 4 (44), 201-5 (in Chinese), (2008).

DOI: 10.3901/jme.2008.04.201

Google Scholar

[11] A. Roth-Nebelsick, D. Uhl, V. Mosbrugger, H. Kerp. Evolution and Function of Leaf Venation Architecture: A Review. Ann Bot (2001) 87 (5), 553-66.

DOI: 10.1006/anbo.2001.1391

Google Scholar

[12] http: /keVictoria regiapu. xtbg. ac. cn/n755c12. aspx.

Google Scholar

[13] H. Kobayashi, M. Daimaruya, K. Kuribayashi. Venation pattern of butterbur leaf and its mechanical contribution. Journal Materials Science Japan, 49 (12), 1318-23, (2000).

DOI: 10.2472/jsms.49.1318

Google Scholar

[14] Liu Wangyu, Liu Xifeng. Simulation of the Rough Network Structure of Plant Leaves in Multiple Loading Cases. Science Technology Engineering, 9(23), 6965-70 (in Chinese) (2009).

Google Scholar

[15] S. Bohn, B. Andreotti, S. Douady, J. Munzinger, Y. Couder. Constitutive property of the local organization of leaf venation networks. Phys Rev E 65, 2002, 061914-061925.

DOI: 10.1103/physreve.65.061914

Google Scholar

[16] T. Sachs. The control of the differentiation of vascular networks. Ann Bot, 1975 (39), 197-204.

Google Scholar

[17] T. Sachs. Pattern formation in plant tissues. United Kingdom: Cambridge University Press (1991), 246.

Google Scholar

[18] H. Meinhardt. Morphogenesis of lines and nets. Differentiation; 6 (2), 117-23, (1976).

Google Scholar

[19] H. Fujita, A. Mochizuki. The origin of the diversity of leaf venation pattern. Dev Dyn 235 (10), 2710-21, (2006).

DOI: 10.1002/dvdy.20908

Google Scholar

[20] A.G. Rolland-Lagan, P. Prusinkiewicz. Reviewing models of auxin canalization in the context of leaf vein pattern formation in Arabidopsis. Plant J; 44, 854-65, (2005).

DOI: 10.1111/j.1365-313x.2005.02581.x

Google Scholar

[21] P. Dimitrov, S.W. Zucker. A constant production hypothesis guides leaf venation patterning. Proc Natl Acad Sci; 103 (24), 9363-8, (2006).

DOI: 10.1073/pnas.0603559103

Google Scholar

[22] F.A. Ditengou, W.D. Teale, P. Kocherspergera, K.A. Flittner, I. Kneuper, E. van der Graaff, H. Nziengui, F. Pinosa, X. Li, R. Nitschke, T. Laux, K. Palme. Mechanical induction of lateral root initiation in Arabidopsis thaliana. Proc. Natl. Acad. Sci.; 105 (48), 18818-23, (2008).

DOI: 10.1073/pnas.0807814105

Google Scholar

[23] W.S. Peters, A.D. Tomos. The history of tissue tension. Ann. Bot. 77 (6), 6570-665, (1996).

Google Scholar

[24] B. Shraiman. Mechanical feedback as a possible regulator of tissue growth. Proc. Natl. Acad. Sci.; 102 (9), 3318-23, (2005).

DOI: 10.1073/pnas.0404782102

Google Scholar

[25] O. Hamant, J. Traas. The mechanics behind plant development. New Phytol. 185 (2), 369-85, (2010).

Google Scholar

[26] A. Boudaoud. An introduction to the mechanics of morphogenesis for plant biologists. Trends Plant Sci; 15 (6), 353-60, (2010).

DOI: 10.1016/j.tplants.2010.04.002

Google Scholar

[27] V. Fleury, J-F. Gouyet, M. Léonetti. Branching in mature: Dynamics and morphogenesis of branching structures, from Cell to River Networks; Springer; 2-20, (2001).

Google Scholar

[28] Y. Couder, L. Pauchard, C. Allain, M. Adda Bedia, S. Douady. The leaf venation as formed in a tensorial field. Eur Phys J B; 28, 135-8, (2002).

DOI: 10.1140/epjb/e2002-00211-1

Google Scholar

[29] M.F. Laguna, S. Bohn, E.A. Jagla. The role of elastic stresses on leaf venation morphogenesis. PLoS Comput. Biol.; 4 (4), e1000055, (2008).

DOI: 10.1371/journal.pcbi.1000055

Google Scholar

[30] F. Corson, H. Henry, M. Adda-Bedia. A model for hierarchical patterns under mechanical stresses. Philos. Mag.; 357-73, (2009).

DOI: 10.1080/14786430903196665

Google Scholar

[31] F. Corson, M. Adda-Bedia, A. Boudaoud. In silico leaf venation networks: growth and reorganization driven by mechanical forces. J. Theor. Biol. 259 (3), 440-8, (2009).

DOI: 10.1016/j.jtbi.2009.05.002

Google Scholar

[32] S. Wang, L. Ren, Y. Liu, Z. Han, Y. Yang. Mechanical characteristics of typical plant leaves. J Bionic Eng.; 7 (3), 294-300, (2010).

DOI: 10.1016/s1672-6529(10)60253-3

Google Scholar

[33] M. Durand. Low-density cellular materials with optimal conductivity and bulk modulus. Grenoble, 27-51, (2007).

Google Scholar

[34] M. Durand. Optimizing transport in a homogeneous network. Phys. Rev. E; 70, 046125, (2004).

Google Scholar

[35] G. Gurtner, M. Durand. Structural properties of stiff elastic networks. Europhysics Letters, (2009).

Google Scholar

[36] N.N. Kizilova. Computational approach to optimal transport network construction in biomechanics. Lecture Notes in Computer Science; 3044, 476-85, (2004).

DOI: 10.1007/978-3-540-24709-8_51

Google Scholar

[37] N.N. Kizilova. Long-distance liquid transport in plants. Proceedings of the Estonian Academy of Sciences; 57(3), 179-203, (2008).

DOI: 10.3176/proc.2008.3.07

Google Scholar

[38] N.N. Kizilova. Common constructal principles in design of transportation networks in plants and animals. 1st International Workshop Shape and Thermodynamics, (2008).

Google Scholar

[39] T.F. Sherman. On connecting large vessels to small: The meaning of Murray's law. J Gen Physiol.; 78 (4), 431-53, (1981).

Google Scholar

[40] H. Honda. Description of form of trees by the parameters of tree-like body: effects of the branching angle and the branch length on the shape of the tree-like body, J Theor Biol.; 31 (2), 331-8, (1971).

DOI: 10.1016/0022-5193(71)90191-3

Google Scholar

[41] W. Schreiner, R. Karch. Constrained Constructive Optimization of Arterial Tree Models. Scaling in Biology; 145-65, (2000).

Google Scholar

[42] Z. Wang, M. Zhao, Q. Yu. Modelling of branching structure of plants. J Theor Biol.; 209, 383-94, (2001).

Google Scholar

[43] X. Ding, K. Yamazaki. Growth technique of stiffener layout pattern for plate and shell structures to achieve minimum compliance, Eng. Optimiz., 37 (3), 259-76, (2005).

DOI: 10.1080/0305215512331328231

Google Scholar

[44] X. Ding, K. Yamazaki. Constructal design of cooling channel in heat transfer system by utilizing optimality of branch systems in nature. J Heat Transfer, 29, 245-55, (2007).

DOI: 10.1115/1.2426357

Google Scholar

[45] C. Mattheck. Design in nature: Learning from trees. Berlin Heidelberg: Springer-Verlag, (1998).

Google Scholar

[46] C. Mattheck, K. Bethge, I. Tesari. Shear effects on failure of hollow trees. Trees (20), 329-33, (2006).

DOI: 10.1007/s00468-005-0044-0

Google Scholar

[47] C. Mattheck, K. Bethge. The Structural Optimization of Trees. Naturwissenschaften; 85, 1-10, (1998).

Google Scholar