[1]
H. Candela, A. Martínez-Laborda, J.L. Micol. Venation Pattern Formation in Arabidopsis thaliana vegetative leaves. Dev Biol., 205(1) 205-16, (1999).
DOI: 10.1006/dbio.1998.9111
Google Scholar
[2]
D. Uhl, V. Mosbrugger. Leaf venation density as a climate and environmental proxy: a critical review and new data. Palaeogeography, Palaeoclimatology, Palaeoecology; 149 (1-4), 15-26, (1999).
DOI: 10.1016/s0031-0182(98)00189-8
Google Scholar
[3]
U. Kull, A. Herbig. Das Blattadersystem der Angiospermen: Form und Evolution. Naturwissenschaften; 82 (10), 441-51, (1995).
DOI: 10.1007/bf01131595
Google Scholar
[4]
J. Chung, K. Lee. Optimal design of rib structures using the topology optimization technique. Proceedings of the Institution of Mechanical Engineers, 211 C, 425-37, (1997).
DOI: 10.1243/0954406971521836
Google Scholar
[5]
L.A. Krog, N. Olhoff. Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives. Computers and Structures; 72 (4-5), 535-63, (1999).
DOI: 10.1016/s0045-7949(98)00326-5
Google Scholar
[6]
D. Bojczuk and W. Szteleblak. Optimization of layout and shape of stiffeners in 2D structures. Computers and Structures; 86 (13-14), 1436-46, (2008).
DOI: 10.1016/j.compstruc.2007.05.005
Google Scholar
[7]
P. Lyaet. Exploration des méthodes d'optimisation pour déterminer la topologie et la forme des renforts de plaque. Thèse l'Université Technologique de Compiègue, (1995).
Google Scholar
[8]
A. Kallassy, and J-L. Marcelin. Optimization of stiffened plates by genetic search. Struct Optim; 13 (2-3), 134-41, (1997).
DOI: 10.1007/bf01199232
Google Scholar
[9]
X. Ding, K. Yamazaki. Stiffener layout design for plate structures by growing and branching tree model (application to vibration-proof design). Structural Optimization; 26 (1-2) 99-110, (2004).
DOI: 10.1007/s00158-003-0309-4
Google Scholar
[10]
X. Ding, J. Lin, K. Yamazaki. Topology design optimization of stiffened thin-wall shell structures based on growth mechanism of root system. Chinese Journal of Mechanical Engineering; 4 (44), 201-5 (in Chinese), (2008).
DOI: 10.3901/jme.2008.04.201
Google Scholar
[11]
A. Roth-Nebelsick, D. Uhl, V. Mosbrugger, H. Kerp. Evolution and Function of Leaf Venation Architecture: A Review. Ann Bot (2001) 87 (5), 553-66.
DOI: 10.1006/anbo.2001.1391
Google Scholar
[12]
http: /keVictoria regiapu. xtbg. ac. cn/n755c12. aspx.
Google Scholar
[13]
H. Kobayashi, M. Daimaruya, K. Kuribayashi. Venation pattern of butterbur leaf and its mechanical contribution. Journal Materials Science Japan, 49 (12), 1318-23, (2000).
DOI: 10.2472/jsms.49.1318
Google Scholar
[14]
Liu Wangyu, Liu Xifeng. Simulation of the Rough Network Structure of Plant Leaves in Multiple Loading Cases. Science Technology Engineering, 9(23), 6965-70 (in Chinese) (2009).
Google Scholar
[15]
S. Bohn, B. Andreotti, S. Douady, J. Munzinger, Y. Couder. Constitutive property of the local organization of leaf venation networks. Phys Rev E 65, 2002, 061914-061925.
DOI: 10.1103/physreve.65.061914
Google Scholar
[16]
T. Sachs. The control of the differentiation of vascular networks. Ann Bot, 1975 (39), 197-204.
Google Scholar
[17]
T. Sachs. Pattern formation in plant tissues. United Kingdom: Cambridge University Press (1991), 246.
Google Scholar
[18]
H. Meinhardt. Morphogenesis of lines and nets. Differentiation; 6 (2), 117-23, (1976).
Google Scholar
[19]
H. Fujita, A. Mochizuki. The origin of the diversity of leaf venation pattern. Dev Dyn 235 (10), 2710-21, (2006).
DOI: 10.1002/dvdy.20908
Google Scholar
[20]
A.G. Rolland-Lagan, P. Prusinkiewicz. Reviewing models of auxin canalization in the context of leaf vein pattern formation in Arabidopsis. Plant J; 44, 854-65, (2005).
DOI: 10.1111/j.1365-313x.2005.02581.x
Google Scholar
[21]
P. Dimitrov, S.W. Zucker. A constant production hypothesis guides leaf venation patterning. Proc Natl Acad Sci; 103 (24), 9363-8, (2006).
DOI: 10.1073/pnas.0603559103
Google Scholar
[22]
F.A. Ditengou, W.D. Teale, P. Kocherspergera, K.A. Flittner, I. Kneuper, E. van der Graaff, H. Nziengui, F. Pinosa, X. Li, R. Nitschke, T. Laux, K. Palme. Mechanical induction of lateral root initiation in Arabidopsis thaliana. Proc. Natl. Acad. Sci.; 105 (48), 18818-23, (2008).
DOI: 10.1073/pnas.0807814105
Google Scholar
[23]
W.S. Peters, A.D. Tomos. The history of tissue tension. Ann. Bot. 77 (6), 6570-665, (1996).
Google Scholar
[24]
B. Shraiman. Mechanical feedback as a possible regulator of tissue growth. Proc. Natl. Acad. Sci.; 102 (9), 3318-23, (2005).
DOI: 10.1073/pnas.0404782102
Google Scholar
[25]
O. Hamant, J. Traas. The mechanics behind plant development. New Phytol. 185 (2), 369-85, (2010).
Google Scholar
[26]
A. Boudaoud. An introduction to the mechanics of morphogenesis for plant biologists. Trends Plant Sci; 15 (6), 353-60, (2010).
DOI: 10.1016/j.tplants.2010.04.002
Google Scholar
[27]
V. Fleury, J-F. Gouyet, M. Léonetti. Branching in mature: Dynamics and morphogenesis of branching structures, from Cell to River Networks; Springer; 2-20, (2001).
Google Scholar
[28]
Y. Couder, L. Pauchard, C. Allain, M. Adda Bedia, S. Douady. The leaf venation as formed in a tensorial field. Eur Phys J B; 28, 135-8, (2002).
DOI: 10.1140/epjb/e2002-00211-1
Google Scholar
[29]
M.F. Laguna, S. Bohn, E.A. Jagla. The role of elastic stresses on leaf venation morphogenesis. PLoS Comput. Biol.; 4 (4), e1000055, (2008).
DOI: 10.1371/journal.pcbi.1000055
Google Scholar
[30]
F. Corson, H. Henry, M. Adda-Bedia. A model for hierarchical patterns under mechanical stresses. Philos. Mag.; 357-73, (2009).
DOI: 10.1080/14786430903196665
Google Scholar
[31]
F. Corson, M. Adda-Bedia, A. Boudaoud. In silico leaf venation networks: growth and reorganization driven by mechanical forces. J. Theor. Biol. 259 (3), 440-8, (2009).
DOI: 10.1016/j.jtbi.2009.05.002
Google Scholar
[32]
S. Wang, L. Ren, Y. Liu, Z. Han, Y. Yang. Mechanical characteristics of typical plant leaves. J Bionic Eng.; 7 (3), 294-300, (2010).
DOI: 10.1016/s1672-6529(10)60253-3
Google Scholar
[33]
M. Durand. Low-density cellular materials with optimal conductivity and bulk modulus. Grenoble, 27-51, (2007).
Google Scholar
[34]
M. Durand. Optimizing transport in a homogeneous network. Phys. Rev. E; 70, 046125, (2004).
Google Scholar
[35]
G. Gurtner, M. Durand. Structural properties of stiff elastic networks. Europhysics Letters, (2009).
Google Scholar
[36]
N.N. Kizilova. Computational approach to optimal transport network construction in biomechanics. Lecture Notes in Computer Science; 3044, 476-85, (2004).
DOI: 10.1007/978-3-540-24709-8_51
Google Scholar
[37]
N.N. Kizilova. Long-distance liquid transport in plants. Proceedings of the Estonian Academy of Sciences; 57(3), 179-203, (2008).
DOI: 10.3176/proc.2008.3.07
Google Scholar
[38]
N.N. Kizilova. Common constructal principles in design of transportation networks in plants and animals. 1st International Workshop Shape and Thermodynamics, (2008).
Google Scholar
[39]
T.F. Sherman. On connecting large vessels to small: The meaning of Murray's law. J Gen Physiol.; 78 (4), 431-53, (1981).
Google Scholar
[40]
H. Honda. Description of form of trees by the parameters of tree-like body: effects of the branching angle and the branch length on the shape of the tree-like body, J Theor Biol.; 31 (2), 331-8, (1971).
DOI: 10.1016/0022-5193(71)90191-3
Google Scholar
[41]
W. Schreiner, R. Karch. Constrained Constructive Optimization of Arterial Tree Models. Scaling in Biology; 145-65, (2000).
Google Scholar
[42]
Z. Wang, M. Zhao, Q. Yu. Modelling of branching structure of plants. J Theor Biol.; 209, 383-94, (2001).
Google Scholar
[43]
X. Ding, K. Yamazaki. Growth technique of stiffener layout pattern for plate and shell structures to achieve minimum compliance, Eng. Optimiz., 37 (3), 259-76, (2005).
DOI: 10.1080/0305215512331328231
Google Scholar
[44]
X. Ding, K. Yamazaki. Constructal design of cooling channel in heat transfer system by utilizing optimality of branch systems in nature. J Heat Transfer, 29, 245-55, (2007).
DOI: 10.1115/1.2426357
Google Scholar
[45]
C. Mattheck. Design in nature: Learning from trees. Berlin Heidelberg: Springer-Verlag, (1998).
Google Scholar
[46]
C. Mattheck, K. Bethge, I. Tesari. Shear effects on failure of hollow trees. Trees (20), 329-33, (2006).
DOI: 10.1007/s00468-005-0044-0
Google Scholar
[47]
C. Mattheck, K. Bethge. The Structural Optimization of Trees. Naturwissenschaften; 85, 1-10, (1998).
Google Scholar