Organic Solvent Traces in Fibrillar Scaffolds for Tissue Engineering

Abstract:

Article Preview

In the present study the amount of xylene remaining in fibrillar scaffolds after their manufacture has been estimated by means of Gas Chromatrography coupled to Mass Spectrometry (GC-MS). For this purpose model scaffolds of poly(ethylene terephthalate) (PET) comprised of microfibrils with diameters of ~1 µm or nanofibrils with diameters of 50-150 nm as well as microfibrillar scaffolds of poly(glycolic acid) (PGA) have been used. An extremely low initial amount of xylene has been found (< 20 ppm). The xylene amount dropped below 2 ppm after drying for 24 h in a vacuum at 80°C. The microfibrillar PGA scaffolds, initially containing more xylene (23.4 ppm), retained only 3.6 ppm after drying for 24 h. After drying for 48 h the amount of xylene in all the scaffolds studied reached the detection limits of the GC-MS apparatus (< 0.5 ppm).

Info:

Pages:

1-6

DOI:

10.4028/www.scientific.net/JBBTE.7.1

Citation:

A. Lederer et al., "Organic Solvent Traces in Fibrillar Scaffolds for Tissue Engineering", Journal of Biomimetics, Biomaterials and Tissue Engineering, Vol. 7, pp. 1-6, 2010

Online since:

October 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.