A Brief Review of Visualization Techniques for Nerve Tissue Engineering Applications

Article Preview

Abstract:

In nerve tissue engineering, scaffolds act as carriers for cells and biochemical factors and as constructs providing appropriate mechanical conditions. During nerve regeneration, new tissue grows into the scaffolds, which degrade gradually. To optimize this process, researchers must study and analyze various morphological and structural features of the scaffolds, the ingrowth of nerve tissue, and scaffold degradation. Therefore, visualization of the scaffolds as well as the generated nerve tissue is essential, yet challenging Visualization techniques currently used in nerve tissue engineering include electron microscopy, confocal laser scanning microscopy (CLSM), and micro-computed tomography (micro-CT or μCT). Synchrotron-based micro-CT (SRμCT) is an emerging and promising technique, drawing considerable recent attention. Here, we review typical applications of these visualization techniques in nerve tissue engineering. The promise, feasibility, and challenges of SRμCT as a visualization technique applied to nerve tissue engineering are also discussed.

You might also be interested in these eBooks

Info:

Pages:

81-99

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Woerly, G. W. Plant, A. R. Harvey: Biomaterials Vol. 17 (1996), pp.301-310.

Google Scholar

[2] C. E. Schmidt, J. B. Leach: Annual Review of Biomedical Engineering Vol. 5 (2003), pp.293-347.

Google Scholar

[3] P. Yarlagadda, M. Chandrasekharan, J. Y. M. Shyan: Bio-Medical Materials and Engineering Vol. 15 (2005), pp.159-177.

Google Scholar

[4] D. W. Hutmacher: Biomaterials Vol. 21 (2000), pp.2529-2543.

Google Scholar

[5] W. R. Hendee, K. Cleary, R. L. Ehman, G. D. Fullerton, W. S. Grundfest, J. Haller, C. Kelley, A. E. Meyer, R. F. Murphy, W. Phillips, V. P. Torchilin: Annals of Biomedical Engineering Vol. 36 (2008), pp.1315-1321.

DOI: 10.1007/s10439-008-9529-5

Google Scholar

[6] H. Y. Li, J. Chang: Biomaterials Vol. 25 (2004), pp.5473-5480.

Google Scholar

[7] L. A. Cyster, D. M. Grant, S. M. Howdle, F. Rose, D. J. Irvine, D. Freeman, C. A. Scotchford, K. M. Shakesheff: Biomaterials Vol. 26 (2005), pp.697-702.

DOI: 10.1016/j.biomaterials.2004.03.017

Google Scholar

[8] L. Zhang, Y. B. Li, X. J. Wang, J. Wei, X. L. Peng: Journal of Materials Science Vol. 40 (2005), pp.107-110.

Google Scholar

[9] N. Bhattarai, D. Edmondson, O. Veiseh, F. A. Matsen, M. Q. Zhang: Biomaterials Vol. 26 (2005), pp.6176-6184.

DOI: 10.1016/j.biomaterials.2005.03.027

Google Scholar

[10] K. D. Newman, M. W. McBurney: Biomaterials Vol. 25 (2004), pp.5763-5771.

Google Scholar

[11] M. Lee, J. C. Y. Dunn, B. M. Wu: Biomaterials Vol. 26 (2005), pp.4281-4289.

Google Scholar

[12] Y. Z. Bian, Y. Wang, G. Aibaidoula, G. Q. Chen, Q. Wu: Biomaterials Vol. 30 (2009), pp.217-225.

Google Scholar

[13] L. B. Wu, J. D. Ding: Biomaterials Vol. 25 (2004), pp.5821-5830.

Google Scholar

[14] L. M. He, S. S. Liao, D. P. Quan, M. Ngiam, C. K. Chan, S. Ramakrishna, J. Lu: Biomaterials Vol. 30 (2009), pp.1578-1586.

DOI: 10.1016/j.biomaterials.2008.12.020

Google Scholar

[15] A. Bozkurt, R. Deumens, C. Beckmann, L. O. Damink, F. Schugner, I. Heschel, B. Sellhaus, J. Weis, W. Jahnen-Dechent, G. A. Brook, N. Pallua: Biomaterials Vol. 30 (2009), pp.169-179.

DOI: 10.1016/j.biomaterials.2008.09.017

Google Scholar

[16] L. Muscariello, F. Rosso, G. Marino, A. Giordano, M. Barbarisi, G. Cafiero, A. Barbarisi: Journal of Cellular Physiology Vol. 205 (2005), pp.328-334.

DOI: 10.1002/jcp.20444

Google Scholar

[17] E. Martinez, E. Engel, C. Lopez-Iglesias, C. A. Mills, J. A. Planell, J. Samitier: Micron Vol. 39 (2008), pp.111-116.

Google Scholar

[18] F. Greve, S. Frerker, A. G. Bittermann, C. Burkhardt, A. Hierlemann, H. Hall: Biomaterials Vol. 28 (2007), pp.5246-5258.

DOI: 10.1016/j.biomaterials.2007.08.010

Google Scholar

[19] H. Nomura, B. Baladie, Y. Katayama, C. M. Morshead, M. S. Shoichet, C. H. Tator: Neurosurgery Vol. 63 (2008), pp.127-141.

DOI: 10.1227/01.neu.0000316443.88403.16

Google Scholar

[20] H. Nomura, T. Zahir, H. Kim, Y. Katayama, I. Kulbatski, C. M. Morshead, M. S. Shoichet, C. H. Tator: Tissue Engineering Part A Vol. 14 (2008), pp.649-665.

DOI: 10.1089/tea.2007.0180

Google Scholar

[21] Y. F. Wang, A. R. Hand, C. Gillies, M. L. Grunnet, R. E. Cone, J. O'Rourke: Experimental Eye Research Vol. 65 (1997), pp.105-116.

Google Scholar

[22] D. J. Derosier, A. Klug: Nature Vol. 217 (1968), pp.130-134.

Google Scholar

[23] J. B. Pawley: Handbook of Biological Confocal Microscopy (Springer, Berlin 2006).

Google Scholar

[24] K. E. Crompton, J. D. Goud, R. V. Bellamkonda, T. R. Gengenbach, D. I. Finkelstein, M. K. Horne, J. S. Forsythe: Biomaterials Vol. 28 (2007), pp.441-449.

DOI: 10.1016/j.biomaterials.2006.08.044

Google Scholar

[25] T. Sun, S. Jackson, J. W. Haycock, S. MacNeil: Journal of Biotechnology Vol. 122 (2006), pp.372-381.

Google Scholar

[26] S. M. Richardson, J. M. Curran, R. Chen, A. Vaughan-Thomas, J. A. Hunt, A. J. Freemont, J. A. Hoyland: Biomaterials Vol. 27 (2006), pp.4069-4078.

DOI: 10.1016/j.biomaterials.2006.03.017

Google Scholar

[27] K. Qiu, X. J. Zhao, C. X. Wan, C. S. Zhao, Y. W. Chen: Biomaterials Vol. 27 (2006), pp.1277-1286.

Google Scholar

[28] N. J. Turner, C. M. Kielty, M. G. Walker, A. E. Canfield: Biomaterials Vol. 25 (2004), pp.5955-5964.

Google Scholar

[29] T. M. Patz, A. Doraiswamy, R. J. Narayan, W. He, Y. Zhong, R. Bellamkonda, R. Modi, D. B. Chrisey: Journal of Biomedical Materials Research Part B-Applied Biomaterials Vol. 78B (2006), pp.124-130.

DOI: 10.1002/jbm.b.30473

Google Scholar

[30] R. M. Smeal, R. Rabbitt, R. Biran, P. A. Tresco: Annals of Biomedical Engineering Vol. 33 (2005), pp.376-382.

DOI: 10.1007/s10439-005-1740-z

Google Scholar

[31] A. P. Balgude, X. Yu, A. Szymanski, R. V. Bellamkonda: Biomaterials Vol. 22 (2001), pp.1077-1084.

Google Scholar

[32] A. Sorensen, T. Alekseeva, K. Katechia, M. Robertson, M. O. Riehle, S. C. Barnett: Biomaterials Vol. 28 (2007), pp.5498-5508.

DOI: 10.1016/j.biomaterials.2007.08.034

Google Scholar

[33] J. H. Wosnick, M. S. Shoichet: Chemistry of Materials Vol. 20 (2008), pp.55-60.

Google Scholar

[34] Y. Luo, M. S. Shoichet: Nature Materials Vol. 3 (2004), pp.249-253.

Google Scholar

[35] N. S. Lagali, M. Griffith, N. Shinozaki, P. Fagerholm, R. Munger: Investigative Ophthalmology & Visual Science Vol. 48 (2007), pp.3537-3544.

Google Scholar

[36] A. Labbe, H. Liang, C. Martin, F. Brignole-Baudouin, J. M. Warnet, C. Baudouin: Current Eye Research Vol. 31 (2006), pp.501-509.

DOI: 10.1080/02713680600701513

Google Scholar

[37] N. Lagali, M. Griffith, P. Fagerholm, K. Merrett, M. Huynh, R. Munger: Investigative Ophthalmology & Visual Science Vol. 49 (2008), pp.3895-3902.

DOI: 10.1167/iovs.07-1354

Google Scholar

[38] N. S. White, R. J. Errington: Advanced Drug Delivery Reviews Vol. 57 (2005), pp.17-42.

Google Scholar

[39] S. R. Pygall, J. Whetstone, P. Timmins, C. D. Melia: Advanced Drug Delivery Reviews Vol. 59 (2007), pp.1434-1452.

DOI: 10.1016/j.addr.2007.06.018

Google Scholar

[40] A. Piotrowicz, M. S. Shoichet: Biomaterials Vol. 27 (2006), p.2018-(2027).

Google Scholar

[41] B. G. Ballios, M. J. Cooke, D. van der Kooy, M. S. Shoichet: Biomaterials Vol. 31 (2010), pp.2555-2564.

DOI: 10.1016/j.biomaterials.2009.12.004

Google Scholar

[42] K. Fu, D. W. Pack, A. M. Klibanov, R. Langer: Pharmaceutical Research Vol. 17 (2000), pp.100-106.

Google Scholar

[43] T. Du, M. Wasser: Cytometry Part A Vol. 75A (2009), pp.329-343.

Google Scholar

[44] G. J. Stuart, L. M. Palmer: Pflugers Archiv-European Journal of Physiology Vol. 453 (2006), pp.403-410.

Google Scholar

[45] U. Bonse, F. Busch: Progress in Biophysics & Molecular Biology Vol. 65 (1996), pp.133-169.

Google Scholar

[46] V. S. Komlev, F. Peyrin, M. Mastrogiacomo, A. Cedola, A. Papadimitropoulos, F. Rustichelli, R. Cancedda: Tissue Engineering Vol. 12 (2006), pp.3449-3458.

DOI: 10.1089/ten.2006.12.3449

Google Scholar

[47] S. Halligan, H. M. Fenlon: British Medical Journal Vol. 319 (1999), pp.1249-1252.

Google Scholar

[48] M. J. Lane, D. M. Liu, M. D. Huynh, R. B. Jeffrey, R. E. Mindelzun, D. S. Katz: Radiology Vol. 213 (1999), pp.341-346.

Google Scholar

[49] F. Barrere, T. A. Mahmood, K. de Groot, C. A. van Blitterswijk: Materials Science & Engineering R-Reports Vol. 59 (2008), pp.38-71.

Google Scholar

[50] K. Balto, R. Muller, D. C. Carrington, J. Dobeck, P. Stashenko: Journal of Dental Research Vol. 79 (2000), pp.35-40.

DOI: 10.1177/00220345000790010401

Google Scholar

[51] H. Graichen, E. M. Lochmuller, E. Wolf, B. Langkabel, T. Stammberger, M. Haubner, I. Renner-Muller, K. H. Englmeier, F. Eckstein: Anatomy and Embryology Vol. 199 (1999), pp.239-248.

DOI: 10.1007/s004290050225

Google Scholar

[52] T. Yamashita, Y. Nabeshima, M. Noda: Journal of Endocrinology Vol. 164 (2000), pp.239-245.

Google Scholar

[53] S. Nuzzo, F. Peyrin, P. Cloetens, J. Baruchel: Medical Physics Vol. 29 (2002), pp.2672-2681.

Google Scholar

[54] M. Salome, F. Peyrin, P. Cloetens, C. Odet, A. M. Laval-Jeantet, J. Baruchel, P. Spanne: Medical Physics Vol. 26 (1999), pp.2194-2204.

DOI: 10.1118/1.598736

Google Scholar

[55] E. N. Landis, E. N. Nagy, D. T. Keane: Engineering Fracture Mechanics Vol. 70 (2003), pp.911-925.

Google Scholar

[56] A. S. P. Lin, T. H. Barrows, S. H. Cartmell, R. E. Guldberg: Biomaterials Vol. 24 (2003), pp.481-489.

Google Scholar

[57] F. Wang, L. Shor, A. Darling, S. Khalil, W. Sun, S. Guceri, A. Lau: Rapid Prototyping Journal Vol. 10 (2004), pp.42-49.

Google Scholar

[58] T. S. Karande, J. L. Ong, C. M. Agrawal: Annals of Biomedical Engineering Vol. 32 (2004), pp.1728-1743.

Google Scholar

[59] S. L. Ishaug, G. M. Crane, M. J. Miller, A. W. Yasko, M. J. Yaszemski, A. G. Mikos: Journal of Biomedical Materials Research Vol. 36 (1997), pp.17-28.

DOI: 10.1002/(sici)1097-4636(199707)36:1<17::aid-jbm3>3.0.co;2-o

Google Scholar

[60] N. A. Silva, A. J. Salgado, R. A. Sousa, J. T. Oliveira, A. J. Pedro, H. Leite-Almeida, R. Cerqueira, A. Almeida, F. Mastronardi, J. F. Mano, N. M. Neves, N. Sousa, R. L. Reis: Tissue Engineering Part A Vol. 16 (2010), pp.45-54.

DOI: 10.1089/ten.tea.2008.0559

Google Scholar

[61] J. F. Mano, G. Hungerford, J. L. G. Ribelles: Materials Science & Engineering C-Biomimetic and Supramolecular Systems Vol. 28 (2008), pp.1356-1365.

Google Scholar

[62] N. Ashammakhi, A. Papp, R. Sayed, M. Ruuskanen, M. Kallioinen, M. Kellomaki, T. Waris, J. Seppala, P. Tormala: Annales Chirurgiae Et Gynaecologiae Vol. 88 (1999), pp.313-317.

Google Scholar

[63] G. R. D. Evans, K. Brandt, M. S. Widmer, L. Lu, R. K. Meszlenyi, P. K. Gupta, A. G. Mikos, J. Hodges, J. Williams, A. Gurlek, A. Nabawi, R. Lohman, C. W. Patrick: Biomaterials Vol. 20 (1999), pp.1109-1115.

DOI: 10.1016/s0142-9612(99)00010-1

Google Scholar

[64] H. F. Schuknecht: The pathology of the ear (Harvard University Press, Boston 1974).

Google Scholar

[65] H. Hagenmueller, S. Hofmann, T. Kohler, H. P. Merkle, D. L. Kaplan, G. Vunjak-Novakovic, R. Mueller, L. Meinel: Annals of Biomedical Engineering Vol. 35 (2007), pp.1657-1667.

DOI: 10.1007/s10439-007-9338-2

Google Scholar

[66] F. Peyrin, M. Mastrogiacomo, R. Cancedda, R. Martinetti: Biotechnology and Bioengineering Vol. 97 (2007), pp.638-648.

Google Scholar

[67] J. M. Williams, A. Adewunmi, R. M. Schek, C. L. Flanagan, P. H. Krebsbach, S. E. Feinberg, S. J. Hollister, S. Das: Biomaterials Vol. 26 (2005), pp.4817-4827.

DOI: 10.1016/j.biomaterials.2004.11.057

Google Scholar

[68] J. Zeltinger, J. K. Sherwood, D. A. Graham, R. Mueller, L. G. Griffith: Tissue Engineering Vol. 7 (2001), pp.557-572.

Google Scholar

[69] S. Cartmell, K. Huynh, A. Lin, S. Nagaraja, R. Guldberg: Journal of Biomedical Materials Research Part A Vol. 69A (2004), pp.97-104.

DOI: 10.1002/jbm.a.20118

Google Scholar

[70] H. Uzun, I. S. Curthoys, A. S. Jones: Acta Oto-Laryngologica Vol. 127 (2007), pp.568-573.

Google Scholar

[71] S. Heinzer, T. Krucker, M. Stampanoni, R. Abela, E. P. Meyer, A. Schuler, P. Schneider, R. Muller: Neuroimage Vol. 32 (2006), pp.626-636.

DOI: 10.1016/j.neuroimage.2006.03.043

Google Scholar

[72] A. Lareida, F. Beckmann, A. Schrott-Fischer, R. Glueckert, W. Freysinger, B. Muller: Journal of Microscopy-Oxford Vol. 234 (2009), pp.95-102.

DOI: 10.1111/j.1365-2818.2009.03143.x

Google Scholar

[73] L. Uebersax, H. Hagenmueller, S. Hofmann, E. Gruenblatt, R. Mueller, G. Vunjak-Novakovic, D. L. Kaplan, H. P. Merkle, L. Meinel in: Tissue Engineering Vol. 12, pp.3417-3429.

DOI: 10.1089/ten.2006.12.3417

Google Scholar

[74] E. Toyota, K. Fujimoto, Y. Ogasawara, T. Kajita, F. Shigeto, T. Matsumoto, M. Goto, F. Kajiya: Circulation Vol. 105 (2002), pp.621-626.

DOI: 10.1161/hc0502.102964

Google Scholar

[75] B. Muller, J. Fischer, U. Dietz, P. J. Thurner, F. Beckmann: Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms Vol. 246 (2006), pp.254-261.

DOI: 10.1016/j.nimb.2005.12.048

Google Scholar

[76] C. L. Duvall, W. R. Taylor, D. Weiss, R. E. Guldberg: American Journal of Physiology-Heart and Circulatory Physiology Vol. 287 (2004), p. H302-H310.

DOI: 10.1152/ajpheart.00928.2003

Google Scholar

[77] B. Bolland, J. M. Kanczler, P. J. Ginty, S. M. Howdle, K. M. Shakesheff, D. G. Dunlop, R. O. C. Oreffo: Biomaterials Vol. 29 (2008), pp.3221-3227.

DOI: 10.1016/j.biomaterials.2008.04.017

Google Scholar

[78] P. Thurner, B. Muller, F. Beckmann, T. Weitkamp, C. Rau, R. Muller, J. A. Hubbell, U. Sennhauser: Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms Vol. 200 (2003), pp.397-405.

DOI: 10.1016/s0168-583x(02)01729-9

Google Scholar

[79] P. Thurner, R. Muller, G. Raeber, U. Sennhauser, J. Hubbell: Microscopy Research and Technique Vol. 66 (2005), pp.289-298.

Google Scholar

[80] P. Thurner, B. Muller, U. Sennhauser, J. Hubbell, R. Muller: Journal of Physics-Condensed Matter Vol. 16 (2004), p. S3499-S3510.

DOI: 10.1088/0953-8984/16/33/011

Google Scholar

[81] B. H. J. Juurlink, R. M. Devon: Experientia Vol. 47 (1991), pp.75-77.

Google Scholar

[82] C. J. Hall, E. Schultke, L. Rigon, K. Ataelmannan, S. Rigley, R. Menk, F. Arfellie, G. Tromba, S. Pearson, S. Wilkinson, A. Round, S. Crittell, R. Griebel, B. H. J. Juurlink: European Journal of Radiology Vol. 68 (2008), p. S156-S159.

DOI: 10.1016/j.ejrad.2008.04.058

Google Scholar

[83] F. Beckmann, U. Bonse, F. Busch, O. Gunnewig: Journal of Computer Assisted Tomography Vol. 21 (1997), pp.539-553.

Google Scholar

[84] F. Beckmann, K. Heise, B. Kolsch, U. Bonse, M. F. Rajewsky, M. Bartscher, T. Biermann: Biophysical Journal Vol. 76 (1999), pp.98-102.

DOI: 10.1016/s0006-3495(99)77181-x

Google Scholar

[85] B. I. Kim, K. H. Kim, H. S. Youn, S. Jheon, J. K. Kim, H. Kim: Microscopy Research and Technique Vol. 71 (2008), pp.443-447.

DOI: 10.1002/jemt.20571

Google Scholar

[86] R. Zehbe, A. Haibel, H. Riesemeier, U. Gross, C. J. Kirkpatrick, H. Schubert, C. Brochhausen: Journal of the Royal Society Interface Vol. 7 (2010), pp.49-59.

DOI: 10.1098/rsif.2008.0539

Google Scholar

[87] D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmur, Z. Zhong, R. Menk, F. Arfelli, D. Sayers: Physics in Medicine and Biology Vol. 42 (1997), p.2015-(2025).

DOI: 10.1088/0031-9155/42/11/001

Google Scholar

[88] A. Bravin: Journal of Physics D-Applied Physics Vol. 36 (2003), p. A24-A29.

Google Scholar

[89] M. O. Hasnah, Z. Zhong, O. Oltulu, E. Pisano, R. E. Johnston, D. Sayers, W. Thomlinson, D. Chapman: Medical Physics Vol. 29 (2002), pp.2216-2221.

DOI: 10.1118/1.1507782

Google Scholar

[90] H. Li, L. Zhang, X. Y. Wang, T. L. Wang, B. E. Wang, X. Y. Zhao, S. Q. Luo: Applied Physics Letters Vol. 94 (2009), p.124101.

Google Scholar

[91] Y. F. Peng, S. L. Chen, G. Y. Tang, Y. S. Chen, R. J. Shen, A. P. Chenb, P. P. Zhu, W. X. Huang, Q. X. Yuan: Journal of X-Ray Science and Technology Vol. 15 (2007), pp.97-100.

Google Scholar

[92] C. L. Liu, Y. Zhang, X. Y. Zhang, W. T. Yang, W. J. Peng, D. R. Shi, P. P. Zhu, W. X. Huang, Q. X. Yuan: High Energy Physics and Nuclear Physics-Chinese Edition Vol. 29 (2005), pp.130-132.

Google Scholar

[93] D. M. Connor, D. Sayers, D. R. Sumner, Z. Zhong: Physics in Medicine and Biology Vol. 51 (2006), pp.3283-3300.

Google Scholar

[94] J. Li, Z. Zhong, R. Lidtke, K. E. Kuettner, C. Peterfy, E. Aliyeva, C. Muehleman: Journal of Anatomy Vol. 202 (2003), pp.463-470.

DOI: 10.1046/j.1469-7580.2003.00175.x

Google Scholar

[95] A. Bravin, J. Keyrilainen, M. Fernandez, S. Fiedler, C. Nemoz, M. L. Karjalainen-Lindsberg, M. Tenhunen, P. Virkkunen, M. Leidenius, K. von Smitten, P. Sipila, P. Suortti: Physics in Medicine and Biology Vol. 52 (2007), pp.2197-2211.

DOI: 10.1088/0031-9155/52/8/011

Google Scholar

[96] Z. Zhong, W. Thomlinson, D. Chapman, D. Sayers: Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment Vol. 450 (2000), pp.556-567.

DOI: 10.1016/s0168-9002(00)00308-9

Google Scholar