p.1
p.7
p.27
p.55
p.81
A Brief Review of Visualization Techniques for Nerve Tissue Engineering Applications
Abstract:
In nerve tissue engineering, scaffolds act as carriers for cells and biochemical factors and as constructs providing appropriate mechanical conditions. During nerve regeneration, new tissue grows into the scaffolds, which degrade gradually. To optimize this process, researchers must study and analyze various morphological and structural features of the scaffolds, the ingrowth of nerve tissue, and scaffold degradation. Therefore, visualization of the scaffolds as well as the generated nerve tissue is essential, yet challenging Visualization techniques currently used in nerve tissue engineering include electron microscopy, confocal laser scanning microscopy (CLSM), and micro-computed tomography (micro-CT or μCT). Synchrotron-based micro-CT (SRμCT) is an emerging and promising technique, drawing considerable recent attention. Here, we review typical applications of these visualization techniques in nerve tissue engineering. The promise, feasibility, and challenges of SRμCT as a visualization technique applied to nerve tissue engineering are also discussed.
Info:
Periodical:
Pages:
81-99
Citation:
Online since:
October 2010
Authors:
Keywords:
Price:
Сopyright:
© 2010 Trans Tech Publications Ltd. All Rights Reserved
Citation:
[1] S. Woerly, G. W. Plant, A. R. Harvey: Biomaterials Vol. 17 (1996), pp.301-310.
[2] C. E. Schmidt, J. B. Leach: Annual Review of Biomedical Engineering Vol. 5 (2003), pp.293-347.
[3] P. Yarlagadda, M. Chandrasekharan, J. Y. M. Shyan: Bio-Medical Materials and Engineering Vol. 15 (2005), pp.159-177.
[4] D. W. Hutmacher: Biomaterials Vol. 21 (2000), pp.2529-2543.
[5] W. R. Hendee, K. Cleary, R. L. Ehman, G. D. Fullerton, W. S. Grundfest, J. Haller, C. Kelley, A. E. Meyer, R. F. Murphy, W. Phillips, V. P. Torchilin: Annals of Biomedical Engineering Vol. 36 (2008), pp.1315-1321.
[6] H. Y. Li, J. Chang: Biomaterials Vol. 25 (2004), pp.5473-5480.
[7] L. A. Cyster, D. M. Grant, S. M. Howdle, F. Rose, D. J. Irvine, D. Freeman, C. A. Scotchford, K. M. Shakesheff: Biomaterials Vol. 26 (2005), pp.697-702.
[8] L. Zhang, Y. B. Li, X. J. Wang, J. Wei, X. L. Peng: Journal of Materials Science Vol. 40 (2005), pp.107-110.
[9] N. Bhattarai, D. Edmondson, O. Veiseh, F. A. Matsen, M. Q. Zhang: Biomaterials Vol. 26 (2005), pp.6176-6184.
[10] K. D. Newman, M. W. McBurney: Biomaterials Vol. 25 (2004), pp.5763-5771.
[11] M. Lee, J. C. Y. Dunn, B. M. Wu: Biomaterials Vol. 26 (2005), pp.4281-4289.
[12] Y. Z. Bian, Y. Wang, G. Aibaidoula, G. Q. Chen, Q. Wu: Biomaterials Vol. 30 (2009), pp.217-225.
[13] L. B. Wu, J. D. Ding: Biomaterials Vol. 25 (2004), pp.5821-5830.
[14] L. M. He, S. S. Liao, D. P. Quan, M. Ngiam, C. K. Chan, S. Ramakrishna, J. Lu: Biomaterials Vol. 30 (2009), pp.1578-1586.
[15] A. Bozkurt, R. Deumens, C. Beckmann, L. O. Damink, F. Schugner, I. Heschel, B. Sellhaus, J. Weis, W. Jahnen-Dechent, G. A. Brook, N. Pallua: Biomaterials Vol. 30 (2009), pp.169-179.
[16] L. Muscariello, F. Rosso, G. Marino, A. Giordano, M. Barbarisi, G. Cafiero, A. Barbarisi: Journal of Cellular Physiology Vol. 205 (2005), pp.328-334.
DOI: 10.1002/jcp.20444
[17] E. Martinez, E. Engel, C. Lopez-Iglesias, C. A. Mills, J. A. Planell, J. Samitier: Micron Vol. 39 (2008), pp.111-116.
[18] F. Greve, S. Frerker, A. G. Bittermann, C. Burkhardt, A. Hierlemann, H. Hall: Biomaterials Vol. 28 (2007), pp.5246-5258.
[19] H. Nomura, B. Baladie, Y. Katayama, C. M. Morshead, M. S. Shoichet, C. H. Tator: Neurosurgery Vol. 63 (2008), pp.127-141.
[20] H. Nomura, T. Zahir, H. Kim, Y. Katayama, I. Kulbatski, C. M. Morshead, M. S. Shoichet, C. H. Tator: Tissue Engineering Part A Vol. 14 (2008), pp.649-665.
[21] Y. F. Wang, A. R. Hand, C. Gillies, M. L. Grunnet, R. E. Cone, J. O'Rourke: Experimental Eye Research Vol. 65 (1997), pp.105-116.
[22] D. J. Derosier, A. Klug: Nature Vol. 217 (1968), pp.130-134.
[23] J. B. Pawley: Handbook of Biological Confocal Microscopy (Springer, Berlin 2006).
[24] K. E. Crompton, J. D. Goud, R. V. Bellamkonda, T. R. Gengenbach, D. I. Finkelstein, M. K. Horne, J. S. Forsythe: Biomaterials Vol. 28 (2007), pp.441-449.
[25] T. Sun, S. Jackson, J. W. Haycock, S. MacNeil: Journal of Biotechnology Vol. 122 (2006), pp.372-381.
[26] S. M. Richardson, J. M. Curran, R. Chen, A. Vaughan-Thomas, J. A. Hunt, A. J. Freemont, J. A. Hoyland: Biomaterials Vol. 27 (2006), pp.4069-4078.
[27] K. Qiu, X. J. Zhao, C. X. Wan, C. S. Zhao, Y. W. Chen: Biomaterials Vol. 27 (2006), pp.1277-1286.
[28] N. J. Turner, C. M. Kielty, M. G. Walker, A. E. Canfield: Biomaterials Vol. 25 (2004), pp.5955-5964.
[29] T. M. Patz, A. Doraiswamy, R. J. Narayan, W. He, Y. Zhong, R. Bellamkonda, R. Modi, D. B. Chrisey: Journal of Biomedical Materials Research Part B-Applied Biomaterials Vol. 78B (2006), pp.124-130.
DOI: 10.1002/jbm.b.30473
[30] R. M. Smeal, R. Rabbitt, R. Biran, P. A. Tresco: Annals of Biomedical Engineering Vol. 33 (2005), pp.376-382.
[31] A. P. Balgude, X. Yu, A. Szymanski, R. V. Bellamkonda: Biomaterials Vol. 22 (2001), pp.1077-1084.
[32] A. Sorensen, T. Alekseeva, K. Katechia, M. Robertson, M. O. Riehle, S. C. Barnett: Biomaterials Vol. 28 (2007), pp.5498-5508.
[33] J. H. Wosnick, M. S. Shoichet: Chemistry of Materials Vol. 20 (2008), pp.55-60.
[34] Y. Luo, M. S. Shoichet: Nature Materials Vol. 3 (2004), pp.249-253.
[35] N. S. Lagali, M. Griffith, N. Shinozaki, P. Fagerholm, R. Munger: Investigative Ophthalmology & Visual Science Vol. 48 (2007), pp.3537-3544.
[36] A. Labbe, H. Liang, C. Martin, F. Brignole-Baudouin, J. M. Warnet, C. Baudouin: Current Eye Research Vol. 31 (2006), pp.501-509.
[37] N. Lagali, M. Griffith, P. Fagerholm, K. Merrett, M. Huynh, R. Munger: Investigative Ophthalmology & Visual Science Vol. 49 (2008), pp.3895-3902.
DOI: 10.1167/iovs.07-1354
[38] N. S. White, R. J. Errington: Advanced Drug Delivery Reviews Vol. 57 (2005), pp.17-42.
[39] S. R. Pygall, J. Whetstone, P. Timmins, C. D. Melia: Advanced Drug Delivery Reviews Vol. 59 (2007), pp.1434-1452.
[40] A. Piotrowicz, M. S. Shoichet: Biomaterials Vol. 27 (2006), p.2018-(2027).
[41] B. G. Ballios, M. J. Cooke, D. van der Kooy, M. S. Shoichet: Biomaterials Vol. 31 (2010), pp.2555-2564.
[42] K. Fu, D. W. Pack, A. M. Klibanov, R. Langer: Pharmaceutical Research Vol. 17 (2000), pp.100-106.
[43] T. Du, M. Wasser: Cytometry Part A Vol. 75A (2009), pp.329-343.
[44] G. J. Stuart, L. M. Palmer: Pflugers Archiv-European Journal of Physiology Vol. 453 (2006), pp.403-410.
[45] U. Bonse, F. Busch: Progress in Biophysics & Molecular Biology Vol. 65 (1996), pp.133-169.
[46] V. S. Komlev, F. Peyrin, M. Mastrogiacomo, A. Cedola, A. Papadimitropoulos, F. Rustichelli, R. Cancedda: Tissue Engineering Vol. 12 (2006), pp.3449-3458.
[47] S. Halligan, H. M. Fenlon: British Medical Journal Vol. 319 (1999), pp.1249-1252.
[48] M. J. Lane, D. M. Liu, M. D. Huynh, R. B. Jeffrey, R. E. Mindelzun, D. S. Katz: Radiology Vol. 213 (1999), pp.341-346.
[49] F. Barrere, T. A. Mahmood, K. de Groot, C. A. van Blitterswijk: Materials Science & Engineering R-Reports Vol. 59 (2008), pp.38-71.
[50] K. Balto, R. Muller, D. C. Carrington, J. Dobeck, P. Stashenko: Journal of Dental Research Vol. 79 (2000), pp.35-40.
[51] H. Graichen, E. M. Lochmuller, E. Wolf, B. Langkabel, T. Stammberger, M. Haubner, I. Renner-Muller, K. H. Englmeier, F. Eckstein: Anatomy and Embryology Vol. 199 (1999), pp.239-248.
[52] T. Yamashita, Y. Nabeshima, M. Noda: Journal of Endocrinology Vol. 164 (2000), pp.239-245.
[53] S. Nuzzo, F. Peyrin, P. Cloetens, J. Baruchel: Medical Physics Vol. 29 (2002), pp.2672-2681.
[54] M. Salome, F. Peyrin, P. Cloetens, C. Odet, A. M. Laval-Jeantet, J. Baruchel, P. Spanne: Medical Physics Vol. 26 (1999), pp.2194-2204.
DOI: 10.1118/1.598736
[55] E. N. Landis, E. N. Nagy, D. T. Keane: Engineering Fracture Mechanics Vol. 70 (2003), pp.911-925.
[56] A. S. P. Lin, T. H. Barrows, S. H. Cartmell, R. E. Guldberg: Biomaterials Vol. 24 (2003), pp.481-489.
[57] F. Wang, L. Shor, A. Darling, S. Khalil, W. Sun, S. Guceri, A. Lau: Rapid Prototyping Journal Vol. 10 (2004), pp.42-49.
[58] T. S. Karande, J. L. Ong, C. M. Agrawal: Annals of Biomedical Engineering Vol. 32 (2004), pp.1728-1743.
[59] S. L. Ishaug, G. M. Crane, M. J. Miller, A. W. Yasko, M. J. Yaszemski, A. G. Mikos: Journal of Biomedical Materials Research Vol. 36 (1997), pp.17-28.
DOI: 10.1002/(sici)1097-4636(199707)36:1<17::aid-jbm3>3.0.co;2-o
[60] N. A. Silva, A. J. Salgado, R. A. Sousa, J. T. Oliveira, A. J. Pedro, H. Leite-Almeida, R. Cerqueira, A. Almeida, F. Mastronardi, J. F. Mano, N. M. Neves, N. Sousa, R. L. Reis: Tissue Engineering Part A Vol. 16 (2010), pp.45-54.
[61] J. F. Mano, G. Hungerford, J. L. G. Ribelles: Materials Science & Engineering C-Biomimetic and Supramolecular Systems Vol. 28 (2008), pp.1356-1365.
[62] N. Ashammakhi, A. Papp, R. Sayed, M. Ruuskanen, M. Kallioinen, M. Kellomaki, T. Waris, J. Seppala, P. Tormala: Annales Chirurgiae Et Gynaecologiae Vol. 88 (1999), pp.313-317.
[63] G. R. D. Evans, K. Brandt, M. S. Widmer, L. Lu, R. K. Meszlenyi, P. K. Gupta, A. G. Mikos, J. Hodges, J. Williams, A. Gurlek, A. Nabawi, R. Lohman, C. W. Patrick: Biomaterials Vol. 20 (1999), pp.1109-1115.
[64] H. F. Schuknecht: The pathology of the ear (Harvard University Press, Boston 1974).
[65] H. Hagenmueller, S. Hofmann, T. Kohler, H. P. Merkle, D. L. Kaplan, G. Vunjak-Novakovic, R. Mueller, L. Meinel: Annals of Biomedical Engineering Vol. 35 (2007), pp.1657-1667.
[66] F. Peyrin, M. Mastrogiacomo, R. Cancedda, R. Martinetti: Biotechnology and Bioengineering Vol. 97 (2007), pp.638-648.
[67] J. M. Williams, A. Adewunmi, R. M. Schek, C. L. Flanagan, P. H. Krebsbach, S. E. Feinberg, S. J. Hollister, S. Das: Biomaterials Vol. 26 (2005), pp.4817-4827.
[68] J. Zeltinger, J. K. Sherwood, D. A. Graham, R. Mueller, L. G. Griffith: Tissue Engineering Vol. 7 (2001), pp.557-572.
[69] S. Cartmell, K. Huynh, A. Lin, S. Nagaraja, R. Guldberg: Journal of Biomedical Materials Research Part A Vol. 69A (2004), pp.97-104.
DOI: 10.1002/jbm.a.20118
[70] H. Uzun, I. S. Curthoys, A. S. Jones: Acta Oto-Laryngologica Vol. 127 (2007), pp.568-573.
[71] S. Heinzer, T. Krucker, M. Stampanoni, R. Abela, E. P. Meyer, A. Schuler, P. Schneider, R. Muller: Neuroimage Vol. 32 (2006), pp.626-636.
[72] A. Lareida, F. Beckmann, A. Schrott-Fischer, R. Glueckert, W. Freysinger, B. Muller: Journal of Microscopy-Oxford Vol. 234 (2009), pp.95-102.
[73] L. Uebersax, H. Hagenmueller, S. Hofmann, E. Gruenblatt, R. Mueller, G. Vunjak-Novakovic, D. L. Kaplan, H. P. Merkle, L. Meinel in: Tissue Engineering Vol. 12, pp.3417-3429.
[74] E. Toyota, K. Fujimoto, Y. Ogasawara, T. Kajita, F. Shigeto, T. Matsumoto, M. Goto, F. Kajiya: Circulation Vol. 105 (2002), pp.621-626.
[75] B. Muller, J. Fischer, U. Dietz, P. J. Thurner, F. Beckmann: Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms Vol. 246 (2006), pp.254-261.
[76] C. L. Duvall, W. R. Taylor, D. Weiss, R. E. Guldberg: American Journal of Physiology-Heart and Circulatory Physiology Vol. 287 (2004), p. H302-H310.
[77] B. Bolland, J. M. Kanczler, P. J. Ginty, S. M. Howdle, K. M. Shakesheff, D. G. Dunlop, R. O. C. Oreffo: Biomaterials Vol. 29 (2008), pp.3221-3227.
[78] P. Thurner, B. Muller, F. Beckmann, T. Weitkamp, C. Rau, R. Muller, J. A. Hubbell, U. Sennhauser: Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms Vol. 200 (2003), pp.397-405.
[79] P. Thurner, R. Muller, G. Raeber, U. Sennhauser, J. Hubbell: Microscopy Research and Technique Vol. 66 (2005), pp.289-298.
[80] P. Thurner, B. Muller, U. Sennhauser, J. Hubbell, R. Muller: Journal of Physics-Condensed Matter Vol. 16 (2004), p. S3499-S3510.
[81] B. H. J. Juurlink, R. M. Devon: Experientia Vol. 47 (1991), pp.75-77.
[82] C. J. Hall, E. Schultke, L. Rigon, K. Ataelmannan, S. Rigley, R. Menk, F. Arfellie, G. Tromba, S. Pearson, S. Wilkinson, A. Round, S. Crittell, R. Griebel, B. H. J. Juurlink: European Journal of Radiology Vol. 68 (2008), p. S156-S159.
[83] F. Beckmann, U. Bonse, F. Busch, O. Gunnewig: Journal of Computer Assisted Tomography Vol. 21 (1997), pp.539-553.
[84] F. Beckmann, K. Heise, B. Kolsch, U. Bonse, M. F. Rajewsky, M. Bartscher, T. Biermann: Biophysical Journal Vol. 76 (1999), pp.98-102.
[85] B. I. Kim, K. H. Kim, H. S. Youn, S. Jheon, J. K. Kim, H. Kim: Microscopy Research and Technique Vol. 71 (2008), pp.443-447.
DOI: 10.1002/jemt.20571
[86] R. Zehbe, A. Haibel, H. Riesemeier, U. Gross, C. J. Kirkpatrick, H. Schubert, C. Brochhausen: Journal of the Royal Society Interface Vol. 7 (2010), pp.49-59.
[87] D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmur, Z. Zhong, R. Menk, F. Arfelli, D. Sayers: Physics in Medicine and Biology Vol. 42 (1997), p.2015-(2025).
[88] A. Bravin: Journal of Physics D-Applied Physics Vol. 36 (2003), p. A24-A29.
[89] M. O. Hasnah, Z. Zhong, O. Oltulu, E. Pisano, R. E. Johnston, D. Sayers, W. Thomlinson, D. Chapman: Medical Physics Vol. 29 (2002), pp.2216-2221.
DOI: 10.1118/1.1507782
[90] H. Li, L. Zhang, X. Y. Wang, T. L. Wang, B. E. Wang, X. Y. Zhao, S. Q. Luo: Applied Physics Letters Vol. 94 (2009), p.124101.
[91] Y. F. Peng, S. L. Chen, G. Y. Tang, Y. S. Chen, R. J. Shen, A. P. Chenb, P. P. Zhu, W. X. Huang, Q. X. Yuan: Journal of X-Ray Science and Technology Vol. 15 (2007), pp.97-100.
[92] C. L. Liu, Y. Zhang, X. Y. Zhang, W. T. Yang, W. J. Peng, D. R. Shi, P. P. Zhu, W. X. Huang, Q. X. Yuan: High Energy Physics and Nuclear Physics-Chinese Edition Vol. 29 (2005), pp.130-132.
[93] D. M. Connor, D. Sayers, D. R. Sumner, Z. Zhong: Physics in Medicine and Biology Vol. 51 (2006), pp.3283-3300.
[94] J. Li, Z. Zhong, R. Lidtke, K. E. Kuettner, C. Peterfy, E. Aliyeva, C. Muehleman: Journal of Anatomy Vol. 202 (2003), pp.463-470.
[95] A. Bravin, J. Keyrilainen, M. Fernandez, S. Fiedler, C. Nemoz, M. L. Karjalainen-Lindsberg, M. Tenhunen, P. Virkkunen, M. Leidenius, K. von Smitten, P. Sipila, P. Suortti: Physics in Medicine and Biology Vol. 52 (2007), pp.2197-2211.
[96] Z. Zhong, W. Thomlinson, D. Chapman, D. Sayers: Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment Vol. 450 (2000), pp.556-567.