[1]
Auzerias F. M, Dunsmuir J, Ferreol B. B, Martys N, Olson J, Ramakrishnan T. S, Rothman D. H and Schwartz L. M, Transport in Sandstone. A study based on three-dimensional microtomography, Geophys. Res. Lett 23, 705-708, (1996).
DOI: 10.1029/96gl00776
Google Scholar
[2]
Arns C. H, Knackstedt M. A, Pinczewski W. V and Lindquist W.B. Accurate computation of transport properties from microtomographic images, Geophysical Research Letters 28, 3361-3364, 2001. 3. Knackstedt M. A, Arns C. H, Limaye A, Sakellariou M. A, Senden T. J, Sheppard A. P, Sok R. M, Pinczewski W. V, and G. F Bunn. Digital core laboratory: Properties of reservoir core derived from 3D images, J of Petroleum Tech 56(5), 66, (2004).
DOI: 10.2118/87009-ms
Google Scholar
[4]
Sakellariou A, Sawkins T. J, Senden T. J and Limaye A. X-ray tomography for mesoscale physics applications, Physica A, 339(1-2): 152-158, (2004).
DOI: 10.1016/j.physa.2004.03.055
Google Scholar
[5]
Valvatne, P. H., Mohammad, P., Xavier, L and Blunt, M. J. Predictive Pore-Scale Modeling of Single and Multiphase Flow", Trans. Porous Media (2-5) 58 : 23-41.
DOI: 10.1007/1-4020-3604-3_3
Google Scholar
[6]
Arns C. H, Averdunk H, Bauget F, Sakellariou A, Senden T. J, Sheppard A. P, Sok R. M, Pinczewski W. V and Knackstedt M.A. Digital core laboratory: Analysis of reservoir rock fragments from 3D images, Petrophysics 46(4), 260-277, (2005).
DOI: 10.2118/87009-ms
Google Scholar
[7]
Martys N. S and Chen H. Simulation of multicomponent fluids in complex three-dimensional geometries by the Lattice-Boltzmann method. Phys. Rev. E 53, 743-750, (1996).
DOI: 10.1103/physreve.53.743
Google Scholar
[8]
Das, D. B. and Hassanizadeh, S. M. Upscaling Multiphase Flow in Porous Media", Springer Publication, 2005, ISBN 1-4020-3513-6 (HB).
Google Scholar
[9]
Hilpert M and Miller C.Y. Pore morphology based simulations of drainage in totally wetting porous media. Adv. Water Resources 24, 243-255, (2001).
DOI: 10.1016/s0309-1708(00)00056-7
Google Scholar
[10]
Sheppard A. P, Sok R. M, and H Averdunk. Improved pore network extraction methods. SCA2005-20, presented at the SCA Symposium, Toronto, September, (2005).
Google Scholar
[11]
O'Meara D. J, Hirasaki G. J and J. A Rohan. Centrifuge measurements of capillary pressure: Part 1 - outflow boundary condition, SPE Reservoir Engineering (February), 133, (2004).
DOI: 10.2118/18296-pa
Google Scholar
[12]
Bauget F, Arns C. H, Saadatfar M, Turner M. L, Sheppard A. P, Sok R. M, Pinczewski W. V, and Knackstedt M.A. Rock typing and petrophysical property estimation via direct analysis on microtomographic images, SCA2005-19, presented at the Int. Symp. of the SCA, Toronto, August 21-25, (2005).
DOI: 10.2118/95950-ms
Google Scholar
[13]
Melrose J. C and J. E Mallinson. Evaluation of the high-speed centrifuge technique for determining capillary pressure at low wetting-phase saturations, SPE Advanced Technology Series, Vol. 1, No. 1, 108, (1993).
DOI: 10.2118/20597-pa
Google Scholar
[14]
Oren P. E, Bakke S and O. J Arntzen. Extending predictive capabilities to network models, SPE Journal (December), 324, (1998).
DOI: 10.2118/52052-pa
Google Scholar
[15]
Cinar Y, Pusch G and V Reitenbach. Petrophysical and capillary properties of compacted salt, Transport in Porous Media, to appear in (2006).
DOI: 10.1007/s11242-005-2848-1
Google Scholar