Comparison of Filter with Fuzzy Controlled Three Level DC-DC Converter Fed Drive

Article Preview

Abstract:

A simple Fuzzy logic controller (FLC) applied to buck converter is presented in this paper. This approach uses FLC which performs better when compared with the conventional PI controllers. In proposed buck converters, high voltage dc supply is switched at very high frequency and inductively transferred to dc load via a high frequency transformer and rectifier. In this converter four power switches are connected in series to primary of high frequency transformer for large load currents. To achieve large step-down voltage ratios the power switches are turned ON and OFF alternatively with a time gap. The voltage step-down ratios, Total Harmonic Distortion and angular velocity of drive are the parameters to be analyzed. The comparison with the original FLC and comparison of three level DC-DC converter with capacitor and pi filter is carried out by MATLAB-Simulink simulation and Model is designed to verify the proposed method performance.

You might also be interested in these eBooks

Info:

Pages:

63-74

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Liu and X. Ruan, ZVS combined three-level converter—A topology suitable for high input voltage with wide range applications, IEEE Trans. Ind. Electron., vol. 54, no. 2, p.1061–1072, Apr. (2007).

DOI: 10.1109/tie.2007.891993

Google Scholar

[2] D. S. Oliveira, Jr., C. E. A. Silva, R. P. Torrico-Bascop´e, F. L. Tofoli, C. A. Bissochi, Jr., J. B. Vieira, Jr., V. J. Farias, and L. C. de Freitas, Analysis, design, and experimentation of a double forward converter with soft switching characteristics for all switches, IEEE Trans. PowerElectron., vol. 26, no. 8, p.2157–2148, Aug. (2011).

DOI: 10.1109/tpel.2010.2104331

Google Scholar

[3] P.L. Wong, P. Yangand F.C. Lee, ' Performance improvements of interleaving VRMs with coupling inductors, ', IEEE Trans. Power Electron. , vol. 168, no. 4, p.499 to 507, Jul. (2001).

DOI: 10.1109/63.931059

Google Scholar

[4] R.L. Lin , C.C. Hsu , and S.K. Changchien , 'Interleaved four phase buck based current source with isolated energy recovery scheme for electrical discharge machine , ', IEEE Trans. Power electron ., vol. 24, no. 7pp. 2249 to 2258, jul. (2009).

DOI: 10.1109/tpel.2009.2025828

Google Scholar

[5] C. Garcia, P. Zumel, A.D. Castro, and J.A. Cobos, 'Automotive DC to DC bidirectional converter made with many interleaved buck stages, ', IEEE Trans. Power electron., vol. 21, no. 21. p.578 to 586. May (2006).

DOI: 10.1109/tpel.2006.872379

Google Scholar

[6] J.H. Lee, H. S Bac, and B . H. Cho, ' Resistive control for a photovoltaic battery charging system using a microcontroller , ', IEEE Trans. IndElec to iron ., vol. 55 , no. 7, p.2767 to2775, jul. (2008).

DOI: 10.1109/tie.2008.922594

Google Scholar

[7] Y.C. Chuang ' High efficiency ZCS buck converter for rechargeable batteries. ', IEEE trans. Ind. Electron. vol. 57, no. 7. PP. 2463 to 2472, Jul. (2010).

DOI: 10.1109/tie.2009.2035459

Google Scholar

[8] C.S. Moo Y.J. Cinen, H.L. Cheng, and Y.C. Hiseh. 'Twin buck converter with Zero to voltage to transition. ', IEEE TRANS . IND. Electron. vol . 58 , no. 6, p.2366 to 2371, june (2011).

DOI: 10.1109/tie.2010.2069072

Google Scholar

[9] X. Du and H.M. Tai, Double-frequency buck converter., IEEE Trans. Ind. Electron., vol. 56, no. 54, pp.1690-1698, May (2009).

DOI: 10.1109/tie.2009.2013752

Google Scholar

[10] K. Jin and X. Ryan, Zero-voltage-switching-multiresonant three-level converters ., IEEE Trans. Ind. Electron., vol. 54, no. 3, pp.1705-1715, Jun. (2007).

DOI: 10.1109/tie.2007.894730

Google Scholar

[11] J.P. Rodrigues, S.A. Mussa, M.L. Heldwein, and A.J. Perin. Three level ZVS active clamping PWM for the DC-DC buck converter., IEEE Trans. Power Electron., vol. 24, no. 10. pp.2249-2258, Oct. (2009).

DOI: 10.1109/tpel.2009.2022535

Google Scholar

[12] X. Ruan, B. Li, Q. Chen, S.C. Tan, and C.K. Tse, Fundamental considerations of three-level DC-DC converters: Topologies, analysis, and control, IEEE Trans. Circuit Syst., vol. 55, no. 11, pp.3733-3743, Dec. (2008).

DOI: 10.1109/tcsi.2008.927218

Google Scholar

[13] Y.M. Chen, S.Y. Teseng, C.T. Tsai, and T.F. Wu, Interleaved buck converters with a single-capacitor turn-off snubber, IEEE Trans. Aerosp. Electronic Syst., vol. 40, no. 3. pp.954-967, Jul. (2004).

DOI: 10.1109/taes.2004.1337467

Google Scholar

[14] C.T. Tsai and C.L. Shen, Interleaved soft-switching coupled-buck converter with active-clamp circuits, in Proc. IEEEInt. Conf. Power Electron. and Drive Systems., 2009. pp.1113-1118.

DOI: 10.1109/peds.2009.5385749

Google Scholar

[15] J.Y. Lee, Y.S. Jeong, and B.M. Han, An isolated DC/DC converter using high-frequency unregulated LLC resonant converter for fuel cell applications, IEEE Trans. Ind. Electron., vol. 58, no. 7, pp.2926-2934, Jul. (2011).

DOI: 10.1109/tie.2010.2076311

Google Scholar

[16] Dong-Choon Lee, Jeong-Ik Jang, Output voltage control of PWM inverters for stand-alone wind power generation systems using feedback linearization, Industry applications Conference, 2005. Fourtieth IAS AnnualMeeting, Vol. 3, pp.1626-1631, 2-6 Oct. (2005).

DOI: 10.1109/ias.2005.1518664

Google Scholar

[17] Shih-Liang Jung et al, Analysis and Design of Multiple Feedback Loop Control Strategy for A Single-Phase Voltage-Source UPS Inverters Used in AC PowerSources, PESC 1997, pp.706-712.

Google Scholar

[18] Shih-Liang Jung, Ying-Yu Tzou, Discrete Sliding Mode Control of A PWM Inverter for Sinusoidal Output Waveform Synthesis With Optimal Sliding Curve, IEEE Transaction on Power Electronics, Vol. 11, July1996, pp.567-577.

DOI: 10.1109/63.506122

Google Scholar

[19] T. Haneyoshi, A. Kawamura and G.H. Richard, Waveform Compensation of PWM Inverter with Cyclic Fluctuation Loads", IEEE Transaction on Power Electronics, Vol. 24, pp.582-589, (1998).

DOI: 10.1109/28.6108

Google Scholar

[20] V.S.C. Raviraj, P.C. Sen, Comparative Study of Proportional- Integral, Sliding Mode and Fuzzy Logic Controllers for Power converters, IEEE Transaction on Industry Applications, Vol. 33, No. 2, pp.518-524, Mac/April (1997).

DOI: 10.1109/28.568018

Google Scholar

[21] J. Linares-Flores and H. Sira-Ramirez., Dc motor velocity control through a dc-to-dc power converter, Proceedings of 43rd Conference on Decision and Control (CDC), 2004, pp.5297-5302.

DOI: 10.1109/cdc.2004.1429649

Google Scholar

[22] L. Guo, Implementation of digital PID controllers for dc-dc converters using digital signal processors, Proceedings of IEEE EIT, 2007, pp.306-311.

DOI: 10.1109/eit.2007.4374445

Google Scholar

[23] F. Betin, D. Pinchon and G. Capolino, Fuzzy logic applied to speed control of a stepping motor drive", IEEE trans. Ind. Electron., Vol. 47, no. 3. pp.610-622, June (2000).

DOI: 10.1109/41.847902

Google Scholar

[24] Zhang.H. L, HU A J, LI J, etal. Fuzzy PI Speed control of Brushless DC motor. Journal of Kunming University of Science and technology (Natural Science Edition) 2007, 32 (2): 52-55.

Google Scholar

[25] HaoChe, Dong Zhang, ZiYue Cong and ZhiFengZhang, Fuzzy logic control for switched reluctance motor drive, Proceedings, 2002 International Conference on Machine Learning and Cybernetics, vol. 1, pp.145-149, Nov (2002).

DOI: 10.1109/icmlc.2002.1176727

Google Scholar

[26] K. Viswanathan, D. Srinivasan, R. Oruganti. 2002. A Universal Fuzzy controller for Non-Linear Power electronic Converters. FuzzySystems: IEEE'02 Conf. Rec. pp.46-51.

DOI: 10.1109/fuzz.2002.1004957

Google Scholar