Fatigue Life Prediction under Variable Loading Based a Non-Linear Energy Model

Article Preview

Abstract:

A method of fatigue damage accumulation based upon application of energy parameters of the fatigue process is proposed in the paper. Using this model is simple, it has no parameter to be determined, it requires only the knowledge of the curve W–N (W: strain energy density N: number of cycles at failure) determined from the experimental Wöhler curve. To examine the performance of nonlinear models proposed in the estimation of fatigue damage and fatigue life of components under random loading, a batch of specimens made of 6082 T6 aluminium alloy has been studied and some of the results are reported in the present paper. The paper describes an algorithm and suggests a fatigue cumulative damage model, especially when random loading is considered. This work contains the results of uni-axial random load fatigue tests with different mean and amplitude values performed on 6082 T6 aluminium alloy specimens. The proposed model has been formulated to take into account the damage evolution at different load levels and it allows the effect of the loading sequence to be included by means of a recurrence formula derived for multilevel loading, considering complex load sequences. It is concluded that a ‘damaged stress interaction damage rule’ proposed here allows a better fatigue damage prediction than the widely used Palmgren–Miner rule, and a formula derived in random fatigue could be used to predict the fatigue damage and fatigue lifetime very easily. The results obtained by the model are compared with the experimental results and those calculated by the most fatigue damage model used in fatigue (Miner’s model). The comparison shows that the proposed model, presents a good estimation of the experimental results. Moreover, the error is minimized in comparison to the Miner’s model.

You might also be interested in these eBooks

Info:

Pages:

14-21

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Fatemi, L. Yang, Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials, Int. J. Fatigue 20 (1) (1998) 9–34.

DOI: 10.1016/s0142-1123(97)00081-9

Google Scholar

[2] M.A. Miner, Cumulative damage in fatigue, J. Appl. Mech. 67 (1945) A159–A164.

Google Scholar

[3] S. S. Manson, G. R. Halford, Practical Implementation of the Double Linear Damage Rule and Damage Curve Approach for Treating Cumulative Fatigue Damage, Int. J. Fracture 17 (1981) 169-192.

DOI: 10.1007/bf00053519

Google Scholar

[4] T. Bui-Quoc, Cumulative Damage with Interaction Effect due to Fatigue Under Torsion Loading, Experimental Mechanics, (1982) 180-187.

DOI: 10.1007/bf02327403

Google Scholar

[5] M.A. McGaw, S. Kalluri, D. Moore, and J. Heine, The Cumulative Fatigue Damage Behavior of Mar-M 247 in Air and High Pressure Hydrogen, " In: M. R. Mitchell and R. W. Landgraf, (Eds. ), ASTM STP 1211, Advances in Fatigue Lifetime Predictive Techniques: Second Volume, 1993, pp.117-131.

DOI: 10.1520/stp15081s

Google Scholar

[6] G. R. Halford, Cumulative fatigue damage modeling - crack nucleation and early growth, Int. J. Fatigue 19 (1) (1997) pp.253-260.

DOI: 10.1016/s0142-1123(97)00048-0

Google Scholar

[7] G. Mesmacque, S. Garcia, A. Amrouche, C. Rubio-Gonzalez, Sequential law in multiaxial fatigue: a new damage indicator, Int. J. Fatigue 27(4) (2005) 461–467.

DOI: 10.1016/j.ijfatigue.2004.08.005

Google Scholar

[8] A. Aid, J. Chalet, A. Amrouche, G. Mesmacque, M. Benguediab. A new damage indicator: from blocks loading to random loading. Fatigue Design Conf. (16–18 November); 2005. Paris, France.

Google Scholar

[9] F. Ellyin, A criterion for fatigue under multiaxial states of stress. Mechanics Research Communications1(4) (1974) 219–224.

DOI: 10.1016/0093-6413(74)90068-8

Google Scholar

[10] F. Ellyin, Cyclic strain energy as a criterion for multiaxial fatigue failure. In: Miller KJ, Brown MW, editors. Biaxial and Multiaxial. Fatigue, EGF3. London: MEP, 1989: p.571–83.

Google Scholar

[11] F. Ellyin, K. GoŁos, Multiaxial fatigue damage criterion. Trans ASME JEMT 110 (1988) 63–8.

Google Scholar

[12] D.F. Socie, Multiaxial fatigue damage models. Trans ASME JEMT 109(1987) 293–8.

Google Scholar

[13] K.N. Smith, P. Watson, T.H. Topper, A stress-strain function for the fatigue of metals, Journal of Materials 5(4) (1970) 767–76.

Google Scholar

[14] T. Łagoda, E. Macha, W. Bedkowski, A critical plane approach based on energy concepts: Application to biaxial random tension-compression high-cycle fatigue regime, Int. J. Fatigue 21(5) (1999) 431–43.

DOI: 10.1016/s0142-1123(99)00003-1

Google Scholar

[15] T. Łagoda, E. Macha, Generalization of energy multiaxial cyclic fatigue criteria to random loadings. In: S. Kalluri, P.J. Bonacuse, editors. Multiaxial fatigue and deformation: testing and prediction, ASTM STP 1387. West Conshohocken, PA: American Society for Testing and Materials; 2000. p.173.

DOI: 10.1520/stp13504s

Google Scholar

[16] T. Łagoda, Energy models for fatigue life estimation under random loading-part I-the model elaboration, Int. J. Fatigue 23(6) (2001) 467–80.

DOI: 10.1016/s0142-1123(01)00016-0

Google Scholar

[17] T. Łagoda, Energy models for fatigue life estimation under random loading-part II-verification of the model, Int. J. Fatigue 23(6) (2001) 481–9.

DOI: 10.1016/s0142-1123(01)00017-2

Google Scholar

[18] A. Banvillet, T. Łagoda, E. Macha, A. Niesłony, T. Palin-Luc, J. F. Vittori, Fatigue life under non-Gaussian random loading from various models, Int. J. Fatigue 26 (2004) 349–363.

DOI: 10.1016/j.ijfatigue.2003.08.017

Google Scholar

[19] H. Jahed, A. Varvani-Farahani, Upper and lower fatigue life limits model using energy-based fatigue properties, Int. J. Fatigue 28 (2006) 467–473.

DOI: 10.1016/j.ijfatigue.2005.07.039

Google Scholar

[20] H. Jahed, A. Varvani-Farahani, M. Noban, I. Khalaji, An energy-based fatigue life assessment model for various metallic materials under proportional and non-proportional loading conditions, Int. J. Fatigue 4 (2007) 647–655.

DOI: 10.1016/j.ijfatigue.2006.07.017

Google Scholar

[21] A. Aid Cumul d'endommagement en fatigue multiaxiale sous chargement aléatoires. Thèse de Doctorat. 2006, Université Djillali Liabès Sidi Bel-Abbès, Algeria.

Google Scholar

[22] Aid, Z. Semari, A. Amrouche, G. Mesmacque, M. Benguediab, Non lineair damage cumulative model in blooks loading conditions. Application for GS61 Spheroidal ghraphit cast-iron loaded by torsion and plane bending, J. Th. App. Mech. (38) (2008).

Google Scholar

[23] Aid, A. Amrouche, B.A. Bachir, M. Benguediab, Fatigue life prediction under variable loading based on a new damage model, Materials & Design 32(1) (2011)183–191.

DOI: 10.1016/j.matdes.2010.06.010

Google Scholar

[24] K.N. Smith, P. Watson, T.H. Topper, A stress-strain functions for the fatigue on materials, Journal of Materials 5 (4) (1970) 767-778.

Google Scholar

[25] H. Hoffman, T. Seeger, Stress-strain analysis and life predictions of a notched shaft under multiaxial loading, in: G.E. Leese and D. Socie (Eds ), Multiaxial Fatigue: Analysis and Experiments, AE-14, Society of Automative Engineers, Inc., Warrendale, USA, 1989, pp.81-99.

Google Scholar

[26] J. Bergman, T. Seeger, On the influence of cyclic stress-strain curves, damage parameters and various evaluation concepts on the life prediction by the local approach. Proc. 2nd European Coll. On Fracture, Darmstadt, Germany, VDI-Report of Progress, 1979, Vol. 18, No. 6.

Google Scholar

[27] ASTM E 739-91. Standard practice for: statistical analysis of linearized stress-life (s–N) and strain-life (e–N) fatigue data. In: Annual book of ASTM standards, vol. 03. 01. Philadelphia, 1999. p.614–20.

Google Scholar

[28] N. Kimtangar, Contribution à l'étude des lois d'endommagement en fatigue, Thèse de doctorat. I.N.S.A. Lyon (2003).

Google Scholar

[29] L. Franke, G. Dierkes. A non-linear fatigue damage rule with an exponent based on a crack growth boundary condition. Int. J Fatigue 21 (1999) 761–767.

DOI: 10.1016/s0142-1123(99)00045-6

Google Scholar

[30] M. Bendouba, A. Aid, S. Zengah, and M. Benguediab, Modèle énergétique de cumul du dommage et prévision de la durée de vie en fatigue sous chargements aléatoires, Congres Algérien de Mécanique. 2011, Guelma 17-19 November, Algeria.

DOI: 10.51257/a-v1-bm5030

Google Scholar

[31] D.G. Pavlou, A phenomenological fatigue damage accumulation rule based on hardness increasing, for the 2024-T42 aluminum, Engineering Structures 24 (2002) 1363-1368.

DOI: 10.1016/s0141-0296(02)00055-x

Google Scholar