[1]
O. Nanayakkara, Y. Kato, Macro-cell corrosion in reinforcement of concrete under non-homogeneous chloride environment, Journal of Advanced Concrete Technology 7 (1) (2009) 31-40.
DOI: 10.3151/jact.7.31
Google Scholar
[2]
T. Maruya, H. Takeda, K. Horiguchi, K.L. Hsu, Simulation of steel corrosion in concrete based on the model of macro-cell corrosion circuit, Journal of Advanced Concrete Technology 5 (3) (2007) 343-362.
DOI: 10.3151/jact.5.343
Google Scholar
[3]
Z.L. Cao, M. Hibino and H. Goda, Effect of steel surface conditions on the macro-cell polarization behavior of reinforcing steel, Applied Mechanics and Materials 584-576 (2014) 1771-1779.
DOI: 10.4028/www.scientific.net/amm.584-586.1771
Google Scholar
[4]
Z. Cao, M. Hibino, and H. Goda, Effect of water-cement ratio on the macrocell polarization behavior of reinforcing steel, Journal of Engineering 2014 (2014) 1-11.
DOI: 10.1155/2014/925410
Google Scholar
[5]
Z.L. Cao, M. Hibino and H. Goda, Effect of Nitrite Inhibitor on the Macrocell Corrosion Behavior of Reinforcing Steel, Journal of Chemistry 2015 (2015) 1-15.
DOI: 10.1155/2015/402182
Google Scholar
[6]
A. Poursaee, A. Laurent, C.M. Hansson, Corrosion of steel bars in OPC mortar exposed to NaCl, MgCl2 and CaCl2: Macro-and micro-cell corrosion perspective, Cement and Concrete Research 40 (3) (2010) 426-430.
DOI: 10.1016/j.cemconres.2009.09.029
Google Scholar
[7]
C.M. Hansson, A. Poursaee, A. Laurent, Macrocell and microcell corrosion of steel in ordinary Portland cement and high performance concretes, Cement and Concrete Research 36 (11) (2006) 2098-2102.
DOI: 10.1016/j.cemconres.2006.07.005
Google Scholar
[8]
Y. Yuan, Y. Ji, J. Jiang, Effect of corrosion layer of steel bar in concrete on time-variant corrosion rate, Materials and Structures 42 (2009) 1443-1450.
DOI: 10.1617/s11527-008-9464-9
Google Scholar
[9]
Y. Zou, J. Wang, Y.Y. Zheng, Electrochemical techniques for determining corrosion rate of rusted steel in seawater, Corrosion Science (53) (2011) 208-216.
DOI: 10.1016/j.corsci.2010.09.011
Google Scholar
[10]
M. Saleem, M. Shameem, S.E. Hussain, M. Maslehuddin, Effect of moisture, chloride and sulphate contamination on the electrical resistivity of Portland cement concrete, Construction and building Materials 10 (3) (1996) 209-214.
DOI: 10.1016/0950-0618(95)00078-x
Google Scholar
[11]
J. A. González, J.M. Miranda, E. Otero and S. Feliu, Effect of electrochemically reactive rust layers on the corrosion of steel in a Ca (OH)2 solution, Corrosion science 49 (2) (2007) 436-448.
DOI: 10.1016/j.corsci.2006.04.014
Google Scholar
[12]
J. Avila-Mendoza, J.M. Flores and U.C. Castillo, Effect of superficial oxides on corrosion of steel reinforcement embedded in concrete, Corrosion 50 (11) (1994) 879-885.
DOI: 10.5006/1.3293478
Google Scholar
[13]
M. Stratmann, K. Hoffmann, In situ Möβbauer spectroscopic study of reactions within rust layers, Corrosion Science 29 (11) (1989) 1329-1352.
DOI: 10.1016/0010-938x(89)90123-6
Google Scholar
[14]
T. Nishimura, H. Katayama, K. Noda, T. Kodama, Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions, Corrosion 56 (9) (2000) 935-941.
DOI: 10.5006/1.3280597
Google Scholar