[1]
H. Mohanty, Big Data: An Introduction, in Big Data SE - 1, vol. 11, H. Mohanty, P. Bhuyan, and D. Chenthati, Eds. Springer India, 2015, p.1–28.
DOI: 10.1007/978-81-322-2494-5
Google Scholar
[2]
batch processing, Webopedia. QuinStreet Inc. [Online]. Available: http: /www. webopedia. com/TERM/B/batch_processing. html. [Accessed: 05-Nov-2015].
Google Scholar
[3]
Interactive or Online Processing, Wikispaces. [Online]. Available: http: /dis-dpcs. wikispaces. com/3. 3. 5+Batch, +Online+%26+real+time+Processing. [Accessed: 05-Nov-2015].
Google Scholar
[4]
X. Liu, N. Iftikhar, and X. Xie, Survey of real-time processing systems for big data, " Proc. 18th Int. Database Eng. Appl. Symp. - IDEAS , 14, no. October 2015, p.356–361, (2014).
DOI: 10.1145/2628194.2628251
Google Scholar
[5]
J. Li, Z. Bao, and Z. Li, Modeling Demand Response Capability by Internet Data Centers Processing Batch Computing Jobs, Smart Grid, IEEE Transactions on, vol. 6, no. 2. p.737–747, (2015).
DOI: 10.1109/tsg.2014.2363583
Google Scholar
[6]
D. Sun, G. Fu, X. Liu, and H. Zhang, Optimizing Data Stream Graph for Big Data Stream Computing in Cloud Datacenter Environments, Int. J. Adv. Comput. Technol., vol. 6, no. 5, p.53–65, (2014).
Google Scholar
[7]
K. Singh and R. Kaur, Hadoop: Addressing challenges of Big Data, Advance Computing Conference (IACC), 2014 IEEE International. p.686–689, (2014).
DOI: 10.1109/iadcc.2014.6779407
Google Scholar
[8]
M. Bhandarkar, MapReduce programming with apache Hadoop, Parallel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on. p.1, (2010).
DOI: 10.1109/ipdps.2010.5470377
Google Scholar
[9]
Storm (event processor), " Wikipedia. [Online]. Available: https: /en. wikipedia. org/w/index. php, title=Storm_(event_processor)&redirect=no. [Accessed: 25-Nov-2015].
Google Scholar
[10]
L. Neumeyer and B. Robbins, S4 : Distributed Stream Computing Platform, IEEE Int. Conf. Data Min. Work., p.170–177, (2010).
Google Scholar
[11]
E. Benkhelifa, M. Abdel-Maguid, S. Ewenike, and D. Heatley, The Internet of Things: The eco-system for sustainable growth, Computer Systems and Applications (AICCSA), 2014 IEEE/ACS 11th International Conference on. p.836–842, (2014).
DOI: 10.1109/aiccsa.2014.7073288
Google Scholar
[12]
A. Adshead, Data set to grow 10-fold by 2020 as internet of things takes off, computerweekly. com. [Online]. Available: http: /www. computerweekly. com/news/2240217788/Data-set-to-grow-10-fold-by-2020-as-internet-of-things-takes-off. [Accessed: 05-Nov-2015].
Google Scholar
[13]
D. Sun, G. Zhang, S. Yang, W. Zheng, S. U. Khan, and K. Li, Re-Stream: Real-time and energy-efficient resource scheduling in big data stream computing environments, Inf. Sci. (Ny)., Mar. (2015).
DOI: 10.1016/j.ins.2015.03.027
Google Scholar
[14]
J. Xu, Z. Chen, J. Tang, and S. Su, T-Storm : Traffic-aware Online Scheduling in Storm, IEEE Int. Conf. Distrib. Comput. Syst., (2014).
DOI: 10.1109/icdcs.2014.61
Google Scholar
[15]
R. B. M. Rizwan Patan, A Study Analysis of Energy Issues In Big Data, Intrnational J. Appl. Eng. Res., vol. 10, no. 6, p.15593–15609, (2015).
Google Scholar
[16]
M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, Discretized streams: Fault-tolerant streaming computation at scale, in Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, 2013, p.423–438.
DOI: 10.1145/2517349.2522737
Google Scholar
[17]
F. Chen, M. Kodialam, and T. V Lakshman, Joint scheduling of processing and shuffle phases in mapreduce systems, in INFOCOM, 2012 Proceedings IEEE, 2012, p.1143–1151.
DOI: 10.1109/infcom.2012.6195473
Google Scholar
[18]
A. M. Aly, A. Sallam, B. M. Gnanasekaran, W. G. Aref, M. Ouzzani, and A. Ghafoor, M3: Stream Processing on Main-Memory MapReduce, Icde, no. 8, p.1253–1256, (2012).
DOI: 10.1109/icde.2012.120
Google Scholar
[19]
M. Dusi, N. D'Heureuse, F. Huici, A. Di Pietro, N. Bonelli, G. Bianchi, B. Trammell, and S. Niccolini, Blockmon: Flexible and high-performance big data stream analytics platform and its use cases, NEC Tech. J., vol. 7, no. 2, p.102–106, (2012).
Google Scholar
[20]
K. Kanoun, M. Ruggiero, D. Atienza, and M. Van Der Schaar, Low Power and Scalable Many-Core Architecture for Big-Data Stream Computing, Medianetlab. Ee. Ucla. Edu, no. 20. p.468–473, (2014).
DOI: 10.1109/isvlsi.2014.77
Google Scholar
[21]
Round-robin scheduling, Wikipedia. [Online]. Available: https: /en. wikipedia. org/wiki/Round-robin_scheduling. [Accessed: 20-Nov-2015].
Google Scholar
[22]
Hot swapping, Wikipedia. [Online]. Available: https: /en. wikipedia. org/wiki/Hot_swapping#References. [Accessed: 02-Nov-2015].
Google Scholar
[23]
D. Mills, Network time protocol (NTP), Rfc958, 1985. [Online]. Available: http: /tools. ietf. org/html/rfc958. [Accessed: 01-Nov-2015].
Google Scholar
[24]
CityPulse Dataset Collection., [Online]. Available: http: /iot. ee. surrey. ac. uk: 8080/datasets. html. [Accessed: 10-Nov-2015].
Google Scholar
[25]
K. Suresh, M. Rajasekharababu, Towards Effective Communication Technique for Energy Efficient Internet of Things, International Journal of Engineering Research in Africa, Vol. 21, pp.184-190, Dec. (2015).
DOI: 10.4028/www.scientific.net/jera.21.184
Google Scholar
[26]
Dhanaraj Cheelu, M. Rajasekhara Babu and P. Venkatakrishna (2013).
Google Scholar
[27]
Alok N. Bhatt, M Rajasekhara Babu and Anuja Jain Bhatt , Automation Testing Software that Aid in Efficiency Increase of Regression Process, Recent Patents on Computer Science, BSP, Vol. 6, No. 2, p.107 – 114, (2013).
DOI: 10.2174/22132759113069990008
Google Scholar
[28]
Babu, M.R., Krishna, P.V. and Khalid, M, A framework for power estimation and reduction in multi-core architectures using basic block approach, Int. J. Communication Networks and Distributed Systems, Inderscience Enterprises Ltd., Vol. 10, No. 1, p.40–51, (2013).
DOI: 10.1504/ijcnds.2013.050506
Google Scholar