Performance Improvement of Data Analysis of IoT Applications Using Re-Storm in Big Data Stream Computing Platform

Article Preview

Abstract:

Big Data and Internet of Things (IoT) are Two Popular Technical Terms in Current IT Industry. the Analysis of Iot Data Consumes more Energy since it is Huge in Size. this Paper Proposes a Methodology re-Storm that Addresses Energy Issues and Response Time of Iot Applications Data. it Uses Big Data Stream Computing for re-Storm against Existing Method Storm. the Storm Failed to Address Dynamic Scheduling but re-Storm Deals with Energy-Efficient Traffic Aware Resource Scheduling. this Paper Presents a Model that Different Traffic Arriving Rate of Streams re-Storm at Multiple Traffic Levels for High Energy Efficiency, Low Response Time. it Deals at Three Levels, Firstly, a Mathematical Model for High Energy Efficiency, Low Response Time. Secondly, Allocation of Resources Bearing in Mind DVFS (Dynamic Voltage and Frequency Scaling) Methods and Existing Effective Optimal Consolidation Methods. Thirdly, Online Task Allocation Using Hot Swapping Technique, Streaming Graph Optimizing. Finally, the Experimental Results Show that re-Storm has been Improved the Performance 30-40% against Storm for Real Time Data of Iot Applications.

You might also be interested in these eBooks

Info:

Pages:

141-151

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Mohanty, Big Data: An Introduction, in Big Data SE - 1, vol. 11, H. Mohanty, P. Bhuyan, and D. Chenthati, Eds. Springer India, 2015, p.1–28.

DOI: 10.1007/978-81-322-2494-5

Google Scholar

[2] batch processing, Webopedia. QuinStreet Inc. [Online]. Available: http: /www. webopedia. com/TERM/B/batch_processing. html. [Accessed: 05-Nov-2015].

Google Scholar

[3] Interactive or Online Processing, Wikispaces. [Online]. Available: http: /dis-dpcs. wikispaces. com/3. 3. 5+Batch, +Online+%26+real+time+Processing. [Accessed: 05-Nov-2015].

Google Scholar

[4] X. Liu, N. Iftikhar, and X. Xie, Survey of real-time processing systems for big data, " Proc. 18th Int. Database Eng. Appl. Symp. - IDEAS , 14, no. October 2015, p.356–361, (2014).

DOI: 10.1145/2628194.2628251

Google Scholar

[5] J. Li, Z. Bao, and Z. Li, Modeling Demand Response Capability by Internet Data Centers Processing Batch Computing Jobs, Smart Grid, IEEE Transactions on, vol. 6, no. 2. p.737–747, (2015).

DOI: 10.1109/tsg.2014.2363583

Google Scholar

[6] D. Sun, G. Fu, X. Liu, and H. Zhang, Optimizing Data Stream Graph for Big Data Stream Computing in Cloud Datacenter Environments, Int. J. Adv. Comput. Technol., vol. 6, no. 5, p.53–65, (2014).

Google Scholar

[7] K. Singh and R. Kaur, Hadoop: Addressing challenges of Big Data, Advance Computing Conference (IACC), 2014 IEEE International. p.686–689, (2014).

DOI: 10.1109/iadcc.2014.6779407

Google Scholar

[8] M. Bhandarkar, MapReduce programming with apache Hadoop, Parallel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on. p.1, (2010).

DOI: 10.1109/ipdps.2010.5470377

Google Scholar

[9] Storm (event processor), " Wikipedia. [Online]. Available: https: /en. wikipedia. org/w/index. php, title=Storm_(event_processor)&redirect=no. [Accessed: 25-Nov-2015].

Google Scholar

[10] L. Neumeyer and B. Robbins, S4 : Distributed Stream Computing Platform, IEEE Int. Conf. Data Min. Work., p.170–177, (2010).

Google Scholar

[11] E. Benkhelifa, M. Abdel-Maguid, S. Ewenike, and D. Heatley, The Internet of Things: The eco-system for sustainable growth, Computer Systems and Applications (AICCSA), 2014 IEEE/ACS 11th International Conference on. p.836–842, (2014).

DOI: 10.1109/aiccsa.2014.7073288

Google Scholar

[12] A. Adshead, Data set to grow 10-fold by 2020 as internet of things takes off, computerweekly. com. [Online]. Available: http: /www. computerweekly. com/news/2240217788/Data-set-to-grow-10-fold-by-2020-as-internet-of-things-takes-off. [Accessed: 05-Nov-2015].

Google Scholar

[13] D. Sun, G. Zhang, S. Yang, W. Zheng, S. U. Khan, and K. Li, Re-Stream: Real-time and energy-efficient resource scheduling in big data stream computing environments, Inf. Sci. (Ny)., Mar. (2015).

DOI: 10.1016/j.ins.2015.03.027

Google Scholar

[14] J. Xu, Z. Chen, J. Tang, and S. Su, T-Storm : Traffic-aware Online Scheduling in Storm, IEEE Int. Conf. Distrib. Comput. Syst., (2014).

DOI: 10.1109/icdcs.2014.61

Google Scholar

[15] R. B. M. Rizwan Patan, A Study Analysis of Energy Issues In Big Data, Intrnational J. Appl. Eng. Res., vol. 10, no. 6, p.15593–15609, (2015).

Google Scholar

[16] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, Discretized streams: Fault-tolerant streaming computation at scale, in Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, 2013, p.423–438.

DOI: 10.1145/2517349.2522737

Google Scholar

[17] F. Chen, M. Kodialam, and T. V Lakshman, Joint scheduling of processing and shuffle phases in mapreduce systems, in INFOCOM, 2012 Proceedings IEEE, 2012, p.1143–1151.

DOI: 10.1109/infcom.2012.6195473

Google Scholar

[18] A. M. Aly, A. Sallam, B. M. Gnanasekaran, W. G. Aref, M. Ouzzani, and A. Ghafoor, M3: Stream Processing on Main-Memory MapReduce, Icde, no. 8, p.1253–1256, (2012).

DOI: 10.1109/icde.2012.120

Google Scholar

[19] M. Dusi, N. D'Heureuse, F. Huici, A. Di Pietro, N. Bonelli, G. Bianchi, B. Trammell, and S. Niccolini, Blockmon: Flexible and high-performance big data stream analytics platform and its use cases, NEC Tech. J., vol. 7, no. 2, p.102–106, (2012).

Google Scholar

[20] K. Kanoun, M. Ruggiero, D. Atienza, and M. Van Der Schaar, Low Power and Scalable Many-Core Architecture for Big-Data Stream Computing, Medianetlab. Ee. Ucla. Edu, no. 20. p.468–473, (2014).

DOI: 10.1109/isvlsi.2014.77

Google Scholar

[21] Round-robin scheduling, Wikipedia. [Online]. Available: https: /en. wikipedia. org/wiki/Round-robin_scheduling. [Accessed: 20-Nov-2015].

Google Scholar

[22] Hot swapping, Wikipedia. [Online]. Available: https: /en. wikipedia. org/wiki/Hot_swapping#References. [Accessed: 02-Nov-2015].

Google Scholar

[23] D. Mills, Network time protocol (NTP), Rfc958, 1985. [Online]. Available: http: /tools. ietf. org/html/rfc958. [Accessed: 01-Nov-2015].

Google Scholar

[24] CityPulse Dataset Collection., [Online]. Available: http: /iot. ee. surrey. ac. uk: 8080/datasets. html. [Accessed: 10-Nov-2015].

Google Scholar

[25] K. Suresh, M. Rajasekharababu, Towards Effective Communication Technique for Energy Efficient Internet of Things, International Journal of Engineering Research in Africa, Vol. 21, pp.184-190, Dec. (2015).

DOI: 10.4028/www.scientific.net/jera.21.184

Google Scholar

[26] Dhanaraj Cheelu, M. Rajasekhara Babu and P. Venkatakrishna (2013).

Google Scholar

[27] Alok N. Bhatt, M Rajasekhara Babu and Anuja Jain Bhatt , Automation Testing Software that Aid in Efficiency Increase of Regression Process, Recent Patents on Computer Science, BSP, Vol. 6, No. 2, p.107 – 114, (2013).

DOI: 10.2174/22132759113069990008

Google Scholar

[28] Babu, M.R., Krishna, P.V. and Khalid, M, A framework for power estimation and reduction in multi-core architectures using basic block approach, Int. J. Communication Networks and Distributed Systems, Inderscience Enterprises Ltd., Vol. 10, No. 1, p.40–51, (2013).

DOI: 10.1504/ijcnds.2013.050506

Google Scholar