[1]
Silaipillayarputhur, K. and Idem, S., 2013, A general Matrix Approach to model steady state performance of cross flow heat exchangers, Heat Transfer Engineering, Volume 34, Issue 4, page 338-348.
DOI: 10.1080/01457632.2013.716347
Google Scholar
[2]
Silaipillayarputhur, K. and Idem. S., 2013 Practical Validation of a Matrix Approach Steady State Heat Exchanger Performance Model, Journal of Applied Global Research, ISSN: 1940-1841, Volume 6, Issue 17, page 1-22.
Google Scholar
[3]
Pignotti, A. and Shah, R. K. 1992. Effectiveness-number of transfer units relationships for heat exchanger complex flow arrangements, Int. J. Heat Mass Transfer, Vol. 35, No. 5, pp.1275-1291.
DOI: 10.1016/0017-9310(92)90184-t
Google Scholar
[4]
Domingos, J. D. 1969. Analysis of Complex Assemblies of Heat Exchangers, Int. J. Heat Mass Transfer, Vol. 12, pp.537-548.
DOI: 10.1016/0017-9310(69)90037-4
Google Scholar
[5]
Shah, R. K. and Pignotti, A. 1993. Thermal Analysis of Complex Crossflow Exchangers in Terms of Standard Configurations, J. Heat Transfer, Vol. 115, pp.353-359.
DOI: 10.1115/1.2910686
Google Scholar
[6]
Chen, J. D. and Hsieh, S. S. 1990. General procedure for effectiveness of complex assemblies of heat exchangers, Int. J. Heat Mass Transfer, Vol. 33, No. 8, pp.1667-1674.
DOI: 10.1016/0017-9310(90)90022-m
Google Scholar
[7]
Baclic, B. S. 1978. A Simplified Formula for Crossflow Heat Exchanger Effectiveness, Trans. ASME, Vol. 100, pp.746-747.
DOI: 10.1115/1.3450895
Google Scholar
[8]
Bhuiyan, A. A, Islam, A.K.M.S., 2016. Thermal and hydraulic performance of finned-tube heat exchangers under different flow ranges: A review on modeling and experiment (Review), International Journal of Heat and Mass Transfer, Vol 101, pp.38-59.
DOI: 10.1016/j.ijheatmasstransfer.2016.05.022
Google Scholar
[9]
Bhuiyan, A. A., Ruhul Amin, M., Naser, J., Sadrul Islam, A.K.M., 2015. Effects of geometric parameters for wavy finned-tube heat exchanger in turbulent flow: A CFD modeling (Article), Frontiers in Heat and Mass Transfer, Volume 6, Issue 1, pp.1-11.
DOI: 10.5098/hmt.6.5
Google Scholar
[10]
Bhuiyan, A. A., Amin, M. R., Karim, R., Sadrul Islam, A.K.M., 2014. Plate fin and tube heat exchanger modeling: Effects of performance parameters for turbulent flow regime, International Journal of Automotive and Mechanical Engineering, Volume 9, Issue 1, pp.1768-1781.
DOI: 10.15282/ijame.9.2013.25.0147
Google Scholar
[11]
Bhuiyan, A.A., Amin, M.R., Karim, R., Sadrul Islam, A.K.M., 2013. Three-dimensional performance analysis of plain fin tube heat exchangers in transitional regime, Applied Thermal Engineering, Volume 50, Issue 1, Pages 445-454.
DOI: 10.1016/j.applthermaleng.2012.07.034
Google Scholar
[12]
Kiatpachai, P., Pikulkajorn, S., Wongwises, S., 2015. Air-side performance of serrated welded spiral fin-and-tube heat exchangers, International Journal of Heat and Mass Transfer, Volume 89, Article number 11990, pp.724-732.
DOI: 10.1016/j.ijheatmasstransfer.2015.04.095
Google Scholar
[13]
Purandare, P.S., Lele, M.M., Gupta, R.K., 2015. Investigation on thermal analysis of conical coil heat exchanger, International Journal of Heat and Mass Transfer, Volume 90, pp.1188-1196.
DOI: 10.1016/j.ijheatmasstransfer.2015.07.044
Google Scholar
[14]
Mroue, H., Ramos, J.B., Wrobel, L.C., Jouhara, H., 2015. Experimental and numerical investigation of an air-to-water heat pipe-based heat exchanger, Applied Thermal Engineering, Volume 78, pp.339-350.
DOI: 10.1016/j.applthermaleng.2015.01.005
Google Scholar
[15]
Sinha, A., Chattopadhyay, H., Iyengar, A.K., Biswas, G., 2016. Enhancement of heat transfer in a fin-tube heat exchanger using rectangular winglet type vortex generators, International Journal of Heat and Mass Transfer, Volume 101, pp.667-681.
DOI: 10.1016/j.ijheatmasstransfer.2016.05.032
Google Scholar
[16]
Liu, X., Yu, J., Yan, G., 2016. A numerical study on the air-side heat transfer of perforated finned-tube heat exchangers with large fin pitches, International Journal of Heat and Mass Transfer, Volume 100, pp.199-207.
DOI: 10.1016/j.ijheatmasstransfer.2016.04.081
Google Scholar
[17]
Silaipillayarputhur, K. and Idem, S., 2012. Step Response of a Single-Pass Crossflow Heat Exchanger with Variable Inlet Temperatures and Mass Flow Rates, Journal of Thermal Science and Engineering Applications, Vol. 4, Issue 4, 044501.
DOI: 10.1115/1.4007206
Google Scholar
[18]
Silaipillayarputhur, K. and Idem, S., 2014. Transient Performance Model for a Multipass Cross-Flow heat exchanger, Heat Transfer Engineering, Vol. 35, Issue 1, pp.15-24.
DOI: 10.1080/01457632.2013.810082
Google Scholar
[19]
Silaipillayarputhur, S. and Idem, S., 2014. Transient Performance of Multi-Pass Parallel and Counterflow Crossflow Heat Exchangers, IMECE2014-37030, Proceedings of IMECE, Montreal, Quebec.
DOI: 10.1115/imece2014-37030
Google Scholar
[20]
Silaipillayarputhur, K., and Idem. S., 2015. Transient Response of a Cross Flow Heat Exchanger with Neither Parallel nor Counter Flow Circuiting Subjected to Flow and Temperature Perturbations, IMECE2015-52562, pp. V08AT10A019; 10 pages; November 13-19, Proceedings of ASME IMECE, Houston, USA.
DOI: 10.1115/imece2015-52562
Google Scholar
[21]
Silaipillayarputhur, K., 2015, Prediction of Thermal Performance of Multi Pass Cross Flow Heat Exchangers", ICITAME, 2015, ISBN 978-93-84422-20-2, May 22-23, Proceedings of International Institute of Engineers, Dubai, UAE , pp.36-42.
DOI: 10.15242/iie.e0515010
Google Scholar
[22]
Silaipillayarputhur, K., Muralidharan, S., Badrinath. G., 2015, Prediction of Thermal Performance of Cross Flow Heat Exchangers, Lambert Academic Publishing, Germany, ISBN-13: 978-3-659-78268-8, ISBN-10: 3659785688, EAN: 9783659782688.
Google Scholar
[23]
Kays, W. M., and London A. L. 1984. Compact Heat Exchangers, 3rd Ed., McGraw-Hill, New York.
Google Scholar
[24]
Incropera, F. P., Dewitt, D. P., Bergman, T. L., and Lavine, A. S. 2006. Fundamentals of Heat and Mass Transfer, 4th Edition, John Wiley & Sons, Inc., New York.
Google Scholar