[1]
Wood A.J. and Wollenberg B. F., Power Generation Operation and Control. Wiley, New York, 2nd ed, (1996).
Google Scholar
[2]
Ragab A. El-Sehiemy, Mostafa Abdelkhalik El, Aboul Ella Hassanien. Multiobjective Real-Coded Genetic Algorithm for Economic/Environmental Dispatch Problem., Studies in Informatics and Control 22, no. 2 (2013): 113-122.
DOI: 10.24846/v22i2y201301
Google Scholar
[3]
Hossinie, Mostafa El, Ragab El Sehiemy, and Amira Haikal. Multiobjective optimization algorithm for secure economical/emission dispatch problems., Journal of Engineering and Applied Science 61, no. 1 (2014): 83-103.
Google Scholar
[4]
Sinha, N., Chakrabarti, R., Chattopadhyay, P.: Evolutionary programming techniques for economic load dispatch. Evolutionary Computation, IEEE Transactions on 7(1) (2003) 83-94.
DOI: 10.1109/tevc.2002.806788
Google Scholar
[5]
Noman, N., Iba, H, Differential evolution for economic load dispatch problems. Electric Power Systems Research 78(8), (2008)1322-1331.
DOI: 10.1016/j.epsr.2007.11.007
Google Scholar
[6]
Wong, K., Fung, C, Simulated annealing based economic dispatch algorithm. IEE Proceedings C (Generation, Transmission and Distribution) (1993), pp.509-515.
DOI: 10.1049/ip-c.1993.0074
Google Scholar
[7]
Vo, D.N., Schegner, P., Ongsakul, W, Cuckoo search algorithm for non-convex economic dispatch. Generation, Transmission & Distribution, IET 7(6), (2013) 645-654.
DOI: 10.1049/iet-gtd.2012.0142
Google Scholar
[8]
Ahlem, Y., Bouzeboudja, H. & Zohra, F. The combined economic environmental dispatch using new hybrid metaheuristic. Energy. 115, 468–477 (2016).
DOI: 10.1016/j.energy.2016.08.079
Google Scholar
[9]
Hota PK, Barisal AK, Chakrabarti R, Economic emission load dispatch through fuzzy based bacterial foraging algorithm. Electr Power Energy Syst (2010) 32: 794–803.
DOI: 10.1016/j.ijepes.2010.01.016
Google Scholar
[10]
Niknam, T., Golestaneh, F., Sadeghi, M. S, -Multiobjective Teaching–Learning-Based Optimization for Dynamic Economic Emission Dispatch. Systems Journal, IEEE 6(2), (2012) 341-352.
DOI: 10.1109/jsyst.2012.2183276
Google Scholar
[11]
Modiri-delshad, M. & Abd, N, Solving non-convex economic dispatch problem via backtracking search algorithm. Energy. 77, (2014) 372–381.
DOI: 10.1016/j.energy.2014.09.009
Google Scholar
[12]
Bhattacharjee K, Bhattacharya A, Dey SH, Backtracking search optimization based economic environmental power dispatch problems. Int J Electr Power Energy Syst; 73 (2015) 830–42.
DOI: 10.1016/j.ijepes.2015.06.018
Google Scholar
[13]
dos Santos Coelho, L., Mariani, V. C, An improved harmony search algorithm for power economic load dispatch. Energy Conversion and Management 50 (2009) 2522-2526.
DOI: 10.1016/j.enconman.2009.05.034
Google Scholar
[14]
Özyön, S., Aydin, D, Incremental artificial bee colony with local search to economic dispatch problem with ramp rate limits and prohibited operating zones. Energy Conversion and Management 65 (2013) 397-407.
DOI: 10.1016/j.enconman.2012.07.005
Google Scholar
[15]
V.K. Kamboj, S.K. Bath, J.S. Dhillon, Solution of Non-Convex Economic Load Dispatch Problem Using Grey Wolf Optimizer, Neural Computing and Applications, DOI: 10. 1007/s00521-015-1934-8.
DOI: 10.1007/s00521-015-1934-8
Google Scholar
[16]
Bhattacharya A, Chattopadhyay PK, Solving complex economic load dispatch problems using biogeography-based optimization. Expert Syst Appl, 37 (2010) 3605e15.
DOI: 10.1016/j.eswa.2009.10.031
Google Scholar
[17]
El-Sehiemy, Ragab A., Muhammad B. Shafiq, and Ahmed M. Azmy. An enhanced seeker optimization algorithm for constrained optimal power dispatch problem. " In the Proceeding of the 15th International Middle-East Power Systems Conference (MEPCON , 12), Alexandria, Egypt, December, pp.23-25. (2012).
Google Scholar
[18]
Mohamed Badea, Ragab A. El Sehiemy, Ahmed M. Azmy. Optimal Transmission Switching Problem Utilizing an Enhanced Multi-Phase Seeker Optimization Algorithm., International Journal of engineering research in Africa 24 (2016): 85-102.
DOI: 10.4028/www.scientific.net/jera.24.85
Google Scholar
[19]
Duman, S., Güvenç, U., Yörükeren, N, Gravitational search algorithm for economic dispatch with valve-point effects. International Review of Electrical Engineering 5 (2010) 2890-2895.
Google Scholar
[20]
Y. Abdelaziz, E. S. Ali, and S. M. Abd Elazim, Implementation of Flower Pollination Algorithm for Solving Economic Load Dispatch and Combined Economic Emission Dispatch Problems in Power Systems, Energy, 101 (2016) 506-518.
DOI: 10.1016/j.energy.2016.02.041
Google Scholar
[21]
Yang XS, Nature-inspired metaheuristic algorithms, 2nd Ed., Luniver Press, Bristol (2010).
Google Scholar
[22]
Yang XS, Engineering optimization: an introduction with metaheuristic applications. Wiley, London (2010).
Google Scholar
[23]
He, D., Dong, G., Wang, F. & Mao, Z, Optimization of dynamic economic dispatch with valve-point effect using chaotic sequence based differential evolution algorithms. Energy Convers. Manag. 52 (2011) 1026–1032.
DOI: 10.1016/j.enconman.2010.08.031
Google Scholar
[24]
Wang, Y., Zhou, J., Lu, Y., Qin, H. & Wang, Y, Chaotic self-adaptive particle swarm optimization algorithm for dynamic economic dispatch problem with valve-point effects. Expert Syst. Appl. 38 (2011) 14231–14237.
DOI: 10.1016/j.eswa.2011.04.236
Google Scholar
[25]
Arul, R., Ravi, G. & Velusami, S, Chaotic self-adaptive differential harmony search algorithm based dynamic economic dispatch. Int. J. Electr. Power Energy Syst. 50 (2013) 85–96.
DOI: 10.1016/j.ijepes.2013.02.017
Google Scholar
[26]
Cai, J., Li, Q., Li, L., Peng, H. & Yang, Y, A fuzzy adaptive chaotic ant swarm optimization for economic dispatch. Int. J. Electr. Power Energy Syst. 34 (2012) 154–160.
DOI: 10.1016/j.ijepes.2011.09.020
Google Scholar
[27]
Lu, P., Zhou, J., Zhang, H., Zhang, R. & Wang, C, Chaotic differential bee colony optimization algorithm for dynamic economic dispatch problem with valve-point effects. Int. J. Electr. Power Energy Syst. 62 (2014) 130–143.
DOI: 10.1016/j.ijepes.2014.04.028
Google Scholar
[28]
Adarsh, B. R., Raghunathan, T., Jayabarathi, T. & Yang, X, Economic dispatch using chaotic bat algorithm. Energy 96 (2016) 666–675.
DOI: 10.1016/j.energy.2015.12.096
Google Scholar
[29]
A.H. Gandomi, A.H. Alavi, Krill herd: a new bio-inspired optimization algorithm, Commun. Nonlinear Sci. Numer. Simulat. 17 (2012) 4831–4845.
DOI: 10.1016/j.cnsns.2012.05.010
Google Scholar
[30]
Wang G-G, Guo L, Gandomi AH, Hao G-S, Wang H, Chaotic krill herd algorithm. Inf Sci 274 (2014) 17-34.
DOI: 10.1016/j.ins.2014.02.123
Google Scholar
[31]
Wang G-G, Gandomi AH, Alavi AH, A chaotic particle-swarm krill herd algorithm for global numerical optimization. Kybernetes 42 (2013) 962-978.
DOI: 10.1108/k-11-2012-0108
Google Scholar
[32]
K. Meng, H.G. Wang, Z. Dong, K.P. Wong, Quantum-inspired particle swarm optimization for valve-point economic load dispatch, IEEE Trans. Power Syst. 25 (2010) 215–222.
DOI: 10.1109/tpwrs.2009.2030359
Google Scholar
[33]
R. Kumar, D. Sharma, A. Sadu, A hybrid multi-agent based particle swarm optimization algorithm for economic power dispatch, Int. J. Electr. Power Energy Syst. 33 (2011) 115–123.
DOI: 10.1016/j.ijepes.2010.06.021
Google Scholar
[34]
K.T. Chaturvedi, M. Pandit, L. Srivastava, Particle swarm optimization with time varying acceleration coefficients for non-convex economic power dispatch, Int.J. Electr. Power Energy Syst. 31 (2009) 249–257.
DOI: 10.1016/j.ijepes.2009.01.010
Google Scholar
[35]
Mohammadi-Ivatloo, A. Rabiee, A. Soroudi, M. Ehsan, Iteration PSO with time varying acceleration coefficients for solving non-convex economic dispatch problems, Int. J. Electr. Power Energy Syst. 42 (2012) 508–516.
DOI: 10.1016/j.ijepes.2012.04.060
Google Scholar
[36]
He, D., Wang, F., Mao, Z, A hybrid genetic algorithm approach based on differential evolution for economic dispatch with valve-point effect. International journal of electrical power & energy systems 30 (2008) 31-38.
DOI: 10.1016/j.ijepes.2007.06.023
Google Scholar
[37]
N. Amjady, H. Sharifzadeh, Solution of non-convex economic dispatch problem considering valve loading effect by a new modified differential evolution algorithm, Int. J. Electr. Power Energy Syst. 32 (2010) 893–903.
DOI: 10.1016/j.ijepes.2010.01.023
Google Scholar
[38]
T. Niknam, H. Doagou Mojarrad, H. Zeinoddini Meymand, A novel hybrid particle swarm optimization for economic dispatch with valve-point loading effects, Energy Convers. Manage. 52 (2011) 1800–1809.
DOI: 10.1016/j.enconman.2010.11.004
Google Scholar
[39]
S.K. Wang, J.P. Chiou, C.W. Liu, Non-smooth/non-convex economic dispatch by a novel hybrid differential evolution algorithm, IET Proc. Gener. Transm. Distr. 1 (2007) 793–803.
DOI: 10.1049/iet-gtd:20070183
Google Scholar
[40]
S. Hemamalini, S. Simon, Maclaurin series-based lagrangian method for economic dispatch with valve-point effect, IET Proc. Gener. Transm. Distr. 3 (2009) 859–871.
DOI: 10.1049/iet-gtd.2008.0499
Google Scholar
[41]
J.S. Sumait, J.K. Sykulski, A.K. Othman, Solution of different types of economic load dispatch problems using a pattern search method, Electr. Power Comp. Syst. 36 (2008) 250–265.
DOI: 10.1080/15325000701603892
Google Scholar
[42]
J.G. Vlachogiannis, K.Y. Lee, Economic load dispatch a comparative study on heuristic optimization techniques with an improved coordinated aggregation based PSO, IEEE Trans. Power Syst. 24 (2009) 991–1001.
DOI: 10.1109/tpwrs.2009.2016524
Google Scholar
[43]
N. Nomana, H. Iba, Differential evolution for economic load dispatch problems, Electr. Power Syst. Res. 78 (8) (2008) 1322–1331.
DOI: 10.1016/j.epsr.2007.11.007
Google Scholar
[44]
Roy, P. K., Bhui, S. & Paul, C, Solution of economic load dispatch using hybrid chemical reaction optimization approach. Appl. Soft Comput. J. 24 (2014) 109–125.
DOI: 10.1016/j.asoc.2014.07.013
Google Scholar
[45]
Su C-T, Lin C-T, New approach with a Hopfield modeling framework to economic dispatch. Power Syst IEEE Trans; 15 (2000) 541e5.
DOI: 10.1109/59.867138
Google Scholar
[46]
Abdelaziz A, Mekhamer S, Badr M, Kamh M, Economic dispatch using an enhanced Hopfield neural network. Electr Power Comp Syst, 36 (2008) 719e32.
DOI: 10.1080/15325000701881969
Google Scholar
[47]
Moradi-Dalvand M, Mohammadi-Ivatloo B, Najafi A, Rabiee A, Continuous quick group search optimizer for solving non-convex economic dispatch problems. Electr Power Syst Res; 93 (2012) 93e105.
DOI: 10.1016/j.epsr.2012.10.003
Google Scholar
[48]
Hosseinnezhad V, Rafiee M, Ahmadian M, Ameli MT, Species-based quantum particle swarm optimization for economic load dispatch. Int J Electr Power & Energy Sys, 63(2014) 311e22.
DOI: 10.1016/j.ijepes.2014.05.066
Google Scholar
[49]
Secui DC, A new modified artificial bee colony algorithm for the economic dispatch problem. Energy Convers Manag, 89 (2015) 43-62.
DOI: 10.1016/j.enconman.2014.09.034
Google Scholar
[50]
Elsayed WT, El-Saadany EF. A fully decentralized approach for solving the economic dispatch problem. Power Syst IEEE Trans 2014. http: /dx. doi. org/ 10. 1109/TPWRS. 2014. 2360369.
DOI: 10.1109/tpwrs.2014.2360369
Google Scholar
[51]
Selvakumar AI, Thanushkodi K, Optimization using civilized swarm: solution to economic dispatch with multiple minima. Electr Power Syst Res, 79 (2009) 8e16.
DOI: 10.1016/j.epsr.2008.05.001
Google Scholar
[52]
Victoire, T.A.A., Jeyakumar, A. E, Hybrid PSO–SQP for economic dispatch with valve-point effect. Electric Power Systems Research 71 (2004) 51-59.
DOI: 10.1016/j.epsr.2003.12.017
Google Scholar
[53]
A.I. Selvakumar, K. Thanushkodi, Anti-predatory particle swarm optimization: solution to nonconvex economic dispatch problems, Electr. Power Syst. Res. 78 (2008) 2–10.
DOI: 10.1016/j.epsr.2006.12.001
Google Scholar
[54]
B.K. Panigrahi, V.R. Pandi, Bacterial foraging optimization: Nelder–Mead hybrid algorithm for economic load dispatch, IET Gener. Transm. Distrib. 2 (2008) 556–565.
DOI: 10.1049/iet-gtd:20070422
Google Scholar