A Chaotic Krill Herd Algorithm for Optimal Solution of the Economic Dispatch Problem

Article Preview

Abstract:

The aim of economic dispatch (ED) problem is to provide an efficient utilization of energy resources to produce economic and secure operating conditions for the planning and operation of a power system. ED is formed as a nonlinear optimization problem with conflicting objectives and subjected to both inequality and equality constraints. An efficient improvement of krill herd (KH) algorithm, a powerful metaheuristic method, has been introduced in this paper. The KH algorithm inspired by the Lagrangian and evolutionary behaviour of the krill people in nature, has been investigated to solve ED problem on 6, 13, 20 and 40 generating units. The proposed chaotic krill herd (CKH)) improvement is done by incorporating the chaos approach to KH algorithm for raising the global convergence speed and for enhancing its performance. The elitism scheme serves to save the best krill during the procedure when updating the krill. The results show clearly the superiority of CKH in searching for the best cost value results when compared with well-known metaheuristic search algorithms.

You might also be interested in these eBooks

Info:

Pages:

155-168

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wood A.J. and Wollenberg B. F., Power Generation Operation and Control. Wiley, New York, 2nd ed, (1996).

Google Scholar

[2] Ragab A. El-Sehiemy, Mostafa Abdelkhalik El, Aboul Ella Hassanien. Multiobjective Real-Coded Genetic Algorithm for Economic/Environmental Dispatch Problem., Studies in Informatics and Control 22, no. 2 (2013): 113-122.

DOI: 10.24846/v22i2y201301

Google Scholar

[3] Hossinie, Mostafa El, Ragab El Sehiemy, and Amira Haikal. Multiobjective optimization algorithm for secure economical/emission dispatch problems., Journal of Engineering and Applied Science 61, no. 1 (2014): 83-103.

Google Scholar

[4] Sinha, N., Chakrabarti, R., Chattopadhyay, P.: Evolutionary programming techniques for economic load dispatch. Evolutionary Computation, IEEE Transactions on 7(1) (2003) 83-94.

DOI: 10.1109/tevc.2002.806788

Google Scholar

[5] Noman, N., Iba, H, Differential evolution for economic load dispatch problems. Electric Power Systems Research 78(8), (2008)1322-1331.

DOI: 10.1016/j.epsr.2007.11.007

Google Scholar

[6] Wong, K., Fung, C, Simulated annealing based economic dispatch algorithm. IEE Proceedings C (Generation, Transmission and Distribution) (1993), pp.509-515.

DOI: 10.1049/ip-c.1993.0074

Google Scholar

[7] Vo, D.N., Schegner, P., Ongsakul, W, Cuckoo search algorithm for non-convex economic dispatch. Generation, Transmission & Distribution, IET 7(6), (2013) 645-654.

DOI: 10.1049/iet-gtd.2012.0142

Google Scholar

[8] Ahlem, Y., Bouzeboudja, H. & Zohra, F. The combined economic environmental dispatch using new hybrid metaheuristic. Energy. 115, 468–477 (2016).

DOI: 10.1016/j.energy.2016.08.079

Google Scholar

[9] Hota PK, Barisal AK, Chakrabarti R, Economic emission load dispatch through fuzzy based bacterial foraging algorithm. Electr Power Energy Syst (2010) 32: 794–803.

DOI: 10.1016/j.ijepes.2010.01.016

Google Scholar

[10] Niknam, T., Golestaneh, F., Sadeghi, M. S, -Multiobjective Teaching–Learning-Based Optimization for Dynamic Economic Emission Dispatch. Systems Journal, IEEE 6(2), (2012) 341-352.

DOI: 10.1109/jsyst.2012.2183276

Google Scholar

[11] Modiri-delshad, M. & Abd, N, Solving non-convex economic dispatch problem via backtracking search algorithm. Energy. 77, (2014) 372–381.

DOI: 10.1016/j.energy.2014.09.009

Google Scholar

[12] Bhattacharjee K, Bhattacharya A, Dey SH, Backtracking search optimization based economic environmental power dispatch problems. Int J Electr Power Energy Syst; 73 (2015) 830–42.

DOI: 10.1016/j.ijepes.2015.06.018

Google Scholar

[13] dos Santos Coelho, L., Mariani, V. C, An improved harmony search algorithm for power economic load dispatch. Energy Conversion and Management 50 (2009) 2522-2526.

DOI: 10.1016/j.enconman.2009.05.034

Google Scholar

[14] Özyön, S., Aydin, D, Incremental artificial bee colony with local search to economic dispatch problem with ramp rate limits and prohibited operating zones. Energy Conversion and Management 65 (2013) 397-407.

DOI: 10.1016/j.enconman.2012.07.005

Google Scholar

[15] V.K. Kamboj, S.K. Bath, J.S. Dhillon, Solution of Non-Convex Economic Load Dispatch Problem Using Grey Wolf Optimizer, Neural Computing and Applications, DOI: 10. 1007/s00521-015-1934-8.

DOI: 10.1007/s00521-015-1934-8

Google Scholar

[16] Bhattacharya A, Chattopadhyay PK, Solving complex economic load dispatch problems using biogeography-based optimization. Expert Syst Appl, 37 (2010) 3605e15.

DOI: 10.1016/j.eswa.2009.10.031

Google Scholar

[17] El-Sehiemy, Ragab A., Muhammad B. Shafiq, and Ahmed M. Azmy. An enhanced seeker optimization algorithm for constrained optimal power dispatch problem. " In the Proceeding of the 15th International Middle-East Power Systems Conference (MEPCON , 12), Alexandria, Egypt, December, pp.23-25. (2012).

Google Scholar

[18] Mohamed Badea, Ragab A. El Sehiemy, Ahmed M. Azmy. Optimal Transmission Switching Problem Utilizing an Enhanced Multi-Phase Seeker Optimization Algorithm., International Journal of engineering research in Africa 24 (2016): 85-102.

DOI: 10.4028/www.scientific.net/jera.24.85

Google Scholar

[19] Duman, S., Güvenç, U., Yörükeren, N, Gravitational search algorithm for economic dispatch with valve-point effects. International Review of Electrical Engineering 5 (2010) 2890-2895.

Google Scholar

[20] Y. Abdelaziz, E. S. Ali, and S. M. Abd Elazim, Implementation of Flower Pollination Algorithm for Solving Economic Load Dispatch and Combined Economic Emission Dispatch Problems in Power Systems, Energy, 101 (2016) 506-518.

DOI: 10.1016/j.energy.2016.02.041

Google Scholar

[21] Yang XS, Nature-inspired metaheuristic algorithms, 2nd Ed., Luniver Press, Bristol (2010).

Google Scholar

[22] Yang XS, Engineering optimization: an introduction with metaheuristic applications. Wiley, London (2010).

Google Scholar

[23] He, D., Dong, G., Wang, F. & Mao, Z, Optimization of dynamic economic dispatch with valve-point effect using chaotic sequence based differential evolution algorithms. Energy Convers. Manag. 52 (2011) 1026–1032.

DOI: 10.1016/j.enconman.2010.08.031

Google Scholar

[24] Wang, Y., Zhou, J., Lu, Y., Qin, H. & Wang, Y, Chaotic self-adaptive particle swarm optimization algorithm for dynamic economic dispatch problem with valve-point effects. Expert Syst. Appl. 38 (2011) 14231–14237.

DOI: 10.1016/j.eswa.2011.04.236

Google Scholar

[25] Arul, R., Ravi, G. & Velusami, S, Chaotic self-adaptive differential harmony search algorithm based dynamic economic dispatch. Int. J. Electr. Power Energy Syst. 50 (2013) 85–96.

DOI: 10.1016/j.ijepes.2013.02.017

Google Scholar

[26] Cai, J., Li, Q., Li, L., Peng, H. & Yang, Y, A fuzzy adaptive chaotic ant swarm optimization for economic dispatch. Int. J. Electr. Power Energy Syst. 34 (2012) 154–160.

DOI: 10.1016/j.ijepes.2011.09.020

Google Scholar

[27] Lu, P., Zhou, J., Zhang, H., Zhang, R. & Wang, C, Chaotic differential bee colony optimization algorithm for dynamic economic dispatch problem with valve-point effects. Int. J. Electr. Power Energy Syst. 62 (2014) 130–143.

DOI: 10.1016/j.ijepes.2014.04.028

Google Scholar

[28] Adarsh, B. R., Raghunathan, T., Jayabarathi, T. & Yang, X, Economic dispatch using chaotic bat algorithm. Energy 96 (2016) 666–675.

DOI: 10.1016/j.energy.2015.12.096

Google Scholar

[29] A.H. Gandomi, A.H. Alavi, Krill herd: a new bio-inspired optimization algorithm, Commun. Nonlinear Sci. Numer. Simulat. 17 (2012) 4831–4845.

DOI: 10.1016/j.cnsns.2012.05.010

Google Scholar

[30] Wang G-G, Guo L, Gandomi AH, Hao G-S, Wang H, Chaotic krill herd algorithm. Inf Sci 274 (2014) 17-34.

DOI: 10.1016/j.ins.2014.02.123

Google Scholar

[31] Wang G-G, Gandomi AH, Alavi AH, A chaotic particle-swarm krill herd algorithm for global numerical optimization. Kybernetes 42 (2013) 962-978.

DOI: 10.1108/k-11-2012-0108

Google Scholar

[32] K. Meng, H.G. Wang, Z. Dong, K.P. Wong, Quantum-inspired particle swarm optimization for valve-point economic load dispatch, IEEE Trans. Power Syst. 25 (2010) 215–222.

DOI: 10.1109/tpwrs.2009.2030359

Google Scholar

[33] R. Kumar, D. Sharma, A. Sadu, A hybrid multi-agent based particle swarm optimization algorithm for economic power dispatch, Int. J. Electr. Power Energy Syst. 33 (2011) 115–123.

DOI: 10.1016/j.ijepes.2010.06.021

Google Scholar

[34] K.T. Chaturvedi, M. Pandit, L. Srivastava, Particle swarm optimization with time varying acceleration coefficients for non-convex economic power dispatch, Int.J. Electr. Power Energy Syst. 31 (2009) 249–257.

DOI: 10.1016/j.ijepes.2009.01.010

Google Scholar

[35] Mohammadi-Ivatloo, A. Rabiee, A. Soroudi, M. Ehsan, Iteration PSO with time varying acceleration coefficients for solving non-convex economic dispatch problems, Int. J. Electr. Power Energy Syst. 42 (2012) 508–516.

DOI: 10.1016/j.ijepes.2012.04.060

Google Scholar

[36] He, D., Wang, F., Mao, Z, A hybrid genetic algorithm approach based on differential evolution for economic dispatch with valve-point effect. International journal of electrical power & energy systems 30 (2008) 31-38.

DOI: 10.1016/j.ijepes.2007.06.023

Google Scholar

[37] N. Amjady, H. Sharifzadeh, Solution of non-convex economic dispatch problem considering valve loading effect by a new modified differential evolution algorithm, Int. J. Electr. Power Energy Syst. 32 (2010) 893–903.

DOI: 10.1016/j.ijepes.2010.01.023

Google Scholar

[38] T. Niknam, H. Doagou Mojarrad, H. Zeinoddini Meymand, A novel hybrid particle swarm optimization for economic dispatch with valve-point loading effects, Energy Convers. Manage. 52 (2011) 1800–1809.

DOI: 10.1016/j.enconman.2010.11.004

Google Scholar

[39] S.K. Wang, J.P. Chiou, C.W. Liu, Non-smooth/non-convex economic dispatch by a novel hybrid differential evolution algorithm, IET Proc. Gener. Transm. Distr. 1 (2007) 793–803.

DOI: 10.1049/iet-gtd:20070183

Google Scholar

[40] S. Hemamalini, S. Simon, Maclaurin series-based lagrangian method for economic dispatch with valve-point effect, IET Proc. Gener. Transm. Distr. 3 (2009) 859–871.

DOI: 10.1049/iet-gtd.2008.0499

Google Scholar

[41] J.S. Sumait, J.K. Sykulski, A.K. Othman, Solution of different types of economic load dispatch problems using a pattern search method, Electr. Power Comp. Syst. 36 (2008) 250–265.

DOI: 10.1080/15325000701603892

Google Scholar

[42] J.G. Vlachogiannis, K.Y. Lee, Economic load dispatch a comparative study on heuristic optimization techniques with an improved coordinated aggregation based PSO, IEEE Trans. Power Syst. 24 (2009) 991–1001.

DOI: 10.1109/tpwrs.2009.2016524

Google Scholar

[43] N. Nomana, H. Iba, Differential evolution for economic load dispatch problems, Electr. Power Syst. Res. 78 (8) (2008) 1322–1331.

DOI: 10.1016/j.epsr.2007.11.007

Google Scholar

[44] Roy, P. K., Bhui, S. & Paul, C, Solution of economic load dispatch using hybrid chemical reaction optimization approach. Appl. Soft Comput. J. 24 (2014) 109–125.

DOI: 10.1016/j.asoc.2014.07.013

Google Scholar

[45] Su C-T, Lin C-T, New approach with a Hopfield modeling framework to economic dispatch. Power Syst IEEE Trans; 15 (2000) 541e5.

DOI: 10.1109/59.867138

Google Scholar

[46] Abdelaziz A, Mekhamer S, Badr M, Kamh M, Economic dispatch using an enhanced Hopfield neural network. Electr Power Comp Syst, 36 (2008) 719e32.

DOI: 10.1080/15325000701881969

Google Scholar

[47] Moradi-Dalvand M, Mohammadi-Ivatloo B, Najafi A, Rabiee A, Continuous quick group search optimizer for solving non-convex economic dispatch problems. Electr Power Syst Res; 93 (2012) 93e105.

DOI: 10.1016/j.epsr.2012.10.003

Google Scholar

[48] Hosseinnezhad V, Rafiee M, Ahmadian M, Ameli MT, Species-based quantum particle swarm optimization for economic load dispatch. Int J Electr Power & Energy Sys, 63(2014) 311e22.

DOI: 10.1016/j.ijepes.2014.05.066

Google Scholar

[49] Secui DC, A new modified artificial bee colony algorithm for the economic dispatch problem. Energy Convers Manag, 89 (2015) 43-62.

DOI: 10.1016/j.enconman.2014.09.034

Google Scholar

[50] Elsayed WT, El-Saadany EF. A fully decentralized approach for solving the economic dispatch problem. Power Syst IEEE Trans 2014. http: /dx. doi. org/ 10. 1109/TPWRS. 2014. 2360369.

DOI: 10.1109/tpwrs.2014.2360369

Google Scholar

[51] Selvakumar AI, Thanushkodi K, Optimization using civilized swarm: solution to economic dispatch with multiple minima. Electr Power Syst Res, 79 (2009) 8e16.

DOI: 10.1016/j.epsr.2008.05.001

Google Scholar

[52] Victoire, T.A.A., Jeyakumar, A. E, Hybrid PSO–SQP for economic dispatch with valve-point effect. Electric Power Systems Research 71 (2004) 51-59.

DOI: 10.1016/j.epsr.2003.12.017

Google Scholar

[53] A.I. Selvakumar, K. Thanushkodi, Anti-predatory particle swarm optimization: solution to nonconvex economic dispatch problems, Electr. Power Syst. Res. 78 (2008) 2–10.

DOI: 10.1016/j.epsr.2006.12.001

Google Scholar

[54] B.K. Panigrahi, V.R. Pandi, Bacterial foraging optimization: Nelder–Mead hybrid algorithm for economic load dispatch, IET Gener. Transm. Distrib. 2 (2008) 556–565.

DOI: 10.1049/iet-gtd:20070422

Google Scholar