The Stress Triaxiality Effect under Large Plastic Deformation of a Polybutylene Terephthalate (PBT)

Article Preview

Abstract:

In this work, we focus on a new generation of polymer named Polybutylene terephthalate (PBT). In order to analyse and determine true behaviour of this polymer, a special experimental method was used. Hence, the true stress/strain responses are investigated under a large plastic deformation in different stress triaxiality frameworks with a particular attention on the volumetric strain evolution, with their decomposition to an elastic volumetric strain, plastic volumetric strain and the pure shear. Moreover, the effect of stress triaxiality on the plastic instability and the fracture strain is also examined. With the plastic instability analysis, it was found that plastic strain hardening increases gradually with the triaxiality. Finally, in order to evaluate the damage of this polymer, a theoretical damage formula is proposed.

You might also be interested in these eBooks

Info:

Pages:

13-28

Citation:

Online since:

January 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.A. Benzerga, Micromechanics of coalescence in ductile fracture, J. Mech. Phys. Solids, Vol. 50, No. 6, pp.1331-1362, (2002).

DOI: 10.1016/s0022-5096(01)00125-9

Google Scholar

[2] A.A. Benzerga, J. Besson, A. Pineau, Anisotropic ductile fracture. Part I: experiments, Acta Mater., Vol. 52, No. 15, pp.4623-4638, (2004).

DOI: 10.1016/j.actamat.2004.06.020

Google Scholar

[3] A.A. Benzerga, J. Besson, A. Pineau, Anisotropic ductile fracture. Part II: theory, Acta Mater., Vol. 52, No. 15, pp.4639-4650, (2004).

DOI: 10.1016/j.actamat.2004.06.019

Google Scholar

[4] X. Gao, T. Wang, J. Kim, On ductile fracture initiation toughness: Effects of void volume fraction, void shape and void distribution, Int. J. Sol. Struct., Vol. 42, No. 18-19, pp.5097-5117, (2005).

DOI: 10.1016/j.ijsolstr.2005.02.028

Google Scholar

[5] S.M. Keralavarma, A.A. Benzerga, A constitutive model for plastically anisotropic solids with non-spherical voids, J. Mech. Phys. Solids, Vol. 58, No. 6, pp.874-901, (2010).

DOI: 10.1016/j.jmps.2010.03.007

Google Scholar

[6] S.M. Keralavarma, S. Hoelscher, A.A. Benzerga, Void growth and coalescence in anisotropic plastic solids, Int. J. Sol. Struct., Vol. 48, No. 11-12, pp.1696-1710, (2011).

DOI: 10.1016/j.ijsolstr.2011.02.020

Google Scholar

[7] A.E. Huespe, A. Needleman, J. Oliver, P.J. Sánchez, A finite thickness band method for ductile fracture analysis, Int. J. Plast., Vol 25, No. 12, pp.2349-2365, (2009).

DOI: 10.1016/j.ijplas.2009.03.005

Google Scholar

[8] M.R. and D.J.S. Ayatollahi, Effect of Constraint on the Initiation of Ductile Fracture in Shear Loading M.R. Ayatollahi 1 , D.J. Smith 2 and M.J. Pavier 2 1, 263 (2004) 183–188. doi: 10. 4028/www. scientific. net/KEM. 261-263. 183.

DOI: 10.4028/www.scientific.net/kem.261-263.183

Google Scholar

[9] Y. Li, D.G. Karr, Prediction of ductile fracture in tension by bifurcation, localization, and imperfection analyses, Int. J. Plast., Vol. 25, No. 6, pp.1128-1153, (2009).

DOI: 10.1016/j.ijplas.2008.07.001

Google Scholar

[10] Y. Li, T. Wierzbicki, Prediction of plane strain fracture of AHSS sheets with post- initiation softening, Int. J. Sol. Struct., Vol. 47, No. 17, pp.2316-2327, (2010).

DOI: 10.1016/j.ijsolstr.2010.04.028

Google Scholar

[11] H. Li, M.W. Fu, J. Lu, H. Yang, Ductile fracture: Experiments and computations, Int. J. Plast., Vol. 27, No. 2, pp.147-180, (2011).

Google Scholar

[12] H. Stumpf, J. Makowski, K. Hackl, Dynamical evolution of fracture process region in ductile materials, Int. J. Plast., Vol. 25, No. 5, pp.995-1010, (2009).

DOI: 10.1016/j.ijplas.2008.04.004

Google Scholar

[13] S. Akhtar, H.L. Khan, A new approach for ductile fracture prediction on Al 2024-T351 alloy, Int. J. Plast., Vol. 35, pp.1-12, (2012).

DOI: 10.1016/j.ijplas.2012.01.003

Google Scholar

[14] L. Lecarme, C. Tekoglu, T. Pardoen, Void growth and coalescence in ductile solids with stage III and stage IV strain hardening, Int. J. Plast., Vol. 27, No. 8, pp.1203-1223, (2011).

DOI: 10.1016/j.ijplas.2011.01.004

Google Scholar

[15] T.K. H.J. KIM*, Effect of stresses triaxiality on fracture behaviour of Al-Li system Alloy, Trans Tech Publications, Switzerland. 222 (1996) 1499–1504. doi: 10. 4028/www. scientific. net/MSF. 217-222. 1499.

DOI: 10.4028/www.scientific.net/msf.217-222.1499

Google Scholar

[16] M. Dunand, D. Mohr, Optimized butterfly specimen for the fracture testing of sheet materials under combined normal and shear loading, Eng. Fract. Mech., Vol. 78, No. 17, pp.2919-2934, (2011).

DOI: 10.1016/j.engfracmech.2011.08.008

Google Scholar

[17] S.M. Graham, T. Zhang, X. Gao, M. Hayden, Development of a combined tension torsion experiment for calibration of ductile fracture models under conditions of low triaxiality, Int. J. Mech. Sci., Vol. 54, No. 1, pp.172-181, (2012).

DOI: 10.1016/j.ijmecsci.2011.10.007

Google Scholar

[18] C. G'sell, J.J. Jonas, Determination of the plastic behavior of solid polymers at constant true strain rate, J. Mater. Sci., Vol. 14, No. 3, pp.583-591, (1979).

DOI: 10.1007/bf00772717

Google Scholar

[19] C. G'sell, Plastic Deformation of Amorphous and Semi-Crystalline Materials, Eds., B. Escaig, C. G'sell, Les Editions de Physique, Les Ulis, p.375, (1982).

DOI: 10.1017/s0885715600012550

Google Scholar

[20] C. G'sell, N.A. Aly-Helal, J.J. Jonas, Effect of stress triaxiality on neck propagation during the tensile stretching of solid polymers, J. Mater. Sci., Vol. 18, No. 6, pp.1731-1742, (1983).

DOI: 10.1007/bf00542069

Google Scholar

[21] C. G'sell, A. Marquez-Lucero, P. Gilormini, J.J. Jonas, Flow localization and determination of constitutive relations in highly drawn polymers: one dimensional eulerian formulation of the effect of stress triaxiality, Acta. Metall. Mater., Vol. 33, No. 5, pp.759-770, (1985).

DOI: 10.1016/0001-6160(85)90099-9

Google Scholar

[22] C. G'sell, Instabilités de déformation pendant l'étirage des polymères solides, J. PHYS. III, Vol. 23, No. 6, pp.1085-1101, (1988).

DOI: 10.1051/rphysap:019880023060108500

Google Scholar

[23] C. G'sell, J.M. Hiver, A. Dahoun, A. Souahi, Video-controlled tensile testing of polymers and metals beyond the necking point, J. Mater. Sci., Vol. 27, No. 18, pp.5031-5039, (1992).

DOI: 10.1007/bf01105270

Google Scholar

[24] C. G'sell, J.M. Hiver, F. Gehin, Real-time quantitative determination of volume variations in polymers under plastic strain, In: Deformation, Yield and Fracture of Polymers, The Institute of Metals, London, pp.371-374, (2000).

Google Scholar

[25] C. G'sell, J.M. Hiver, A. Dahoun, Experimental characterization of deformation damage in solid polymers under tension, and its interrelation with necking, Int. J. Sol. Struct., Vol. 39, No. 13-14, pp.3857-3872, (2002).

DOI: 10.1016/s0020-7683(02)00184-1

Google Scholar

[26] J.M. Schultz, Microstructural aspects of failure in semi-crystalline polymers, Polym. Eng. Sci., Vol. 24, pp.770-785, (1984).

DOI: 10.1002/pen.760241007

Google Scholar

[27] M.C. Boyce, D.M. Parks, A.S. Argon, Large inelastic deformation of glassy polymers. Part I: rate dependent constitutive model, Mech. Mater., Vol. 7, No. 1 , pp.15-33, (1988).

DOI: 10.1016/0167-6636(88)90003-8

Google Scholar

[28] S.G. Bardenhagen, M.G. Stout, G.T. Gray, Three-dimensional, finite deformation, viscoplastic constitutive models for polymeric materials, Mech. Mater., Vol. 25, No. 4, pp.235-253, (1997).

DOI: 10.1016/s0167-6636(97)00007-0

Google Scholar

[29] T.A. Tervoort, R.J.M. Smit, W.A.M. Brekelmans, L.E. Govaert, A constitutive equation for the elasto-viscoplastic deformation of glassy polymers, Mech. Time-Depend Mat., Vol. 1, No. 3, pp.269-291, (1997).

DOI: 10.1023/a:1009720708029

Google Scholar

[30] J.M. Gloaguen, J.M. Lefebvre, Plastic deformation behaviour of thermoplastic / clay nanocomposites, Polymer, Vol 42, No. 13, pp.5841-5847, (2001).

DOI: 10.1016/s0032-3861(00)00901-0

Google Scholar

[31] L. Anand, M.E. Gurtin, A theory of amorphous solids undergoing large deformations, with application to polymeric glasses, Int. J. Sol. Struct., Vol. 40, No. 6, pp.1465-1487, (2003).

DOI: 10.1016/s0020-7683(02)00651-0

Google Scholar

[32] A.D. Mulliken, M.C. Boyce, Mechanics of the rate-dependent elastic–plastic deformation of glassy polymers from low to high strain rates, Int. J. Sol. Struct., Vol. 43, No. 5, pp.1331-1356, (2006).

DOI: 10.1016/j.ijsolstr.2005.04.016

Google Scholar

[33] J. Richeton, S. Ahzi, K.S. Vecchio, F.C. Jiang, A. Makradi, Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates, Int. J. Sol. Struct., Vol. 44, No. 24, pp.7938-7954, (2007).

DOI: 10.1016/j.ijsolstr.2007.05.018

Google Scholar

[34] S. Castagnet, Y. Deburck, Relative influence of microstructure and macroscopic triaxiality on cavitation damage in a semi-crystalline polymer, Mat. Sci. Eng. A-Struct., Vol. 448, No. 1, pp.56-66, (2007).

DOI: 10.1016/j.msea.2006.11.100

Google Scholar

[35] G. Boisot, L. Laiarinandrasana, J. Besson, C. Fond, G. Hochstetter, Experimental investigations and modeling of volume change induced by void growth in polyamide 11, Int. J. Sol. Struct., , Vol. 48, No. 19, pp.2642-2654, (2011).

DOI: 10.1016/j.ijsolstr.2011.05.016

Google Scholar

[36] A.R. Ragab, M.A. Mahmoud, S.A. Khorshied, Yielding of commercial poly(vinyl chloride) pipe material, J. Appl. Polym. Sci., Vol. 81, No. 4, pp.991-999, (2001).

DOI: 10.1002/app.1521

Google Scholar

[37] H. Mae, Characterization of material ductility of PP/EPR/talc blend under wide range of stress triaxiality at intermediate and high strain rates, J. Appl. Polym. Sci., Vol. 111, No. 2, pp.854-868, (2009).

DOI: 10.1002/app.29069

Google Scholar

[38] Y. Bai, Y. Bao, T. Wierzbicki, Fracture of prismatic aluminum tubes under reverse straining, Int. J. Impact Eng., Vol. 32, No. 5, pp.671-701, (2005).

DOI: 10.1016/j.ijimpeng.2005.05.002

Google Scholar

[39] Y. Bai, T. Wierzbicki, A new model of metal plasticity and fracture with pressure and Lode dependence, Int. J. Plast., Vol. 24, No. 6, pp.1071-1096, (2007).

DOI: 10.1016/j.ijplas.2007.09.004

Google Scholar

[40] Y. Bai, Effect of loading history on necking and fracture, PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, (2008).

Google Scholar

[41] M. Brünig, S. Gerke, Simulation of damage evolution in ductile metals undergoing dynamic loading conditions, Int. J. Plast., Vol. 27, No. 10, pp.1598-1617, (2011).

DOI: 10.1016/j.ijplas.2011.02.003

Google Scholar

[42] L. Malcher, F.M. Andrade Pires, J.M.A. Cesar de Sa, An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality, Int. J. Plast., Vol. 30-31, pp.81-115, (2012).

DOI: 10.1016/j.ijplas.2011.10.005

Google Scholar

[43] L. Meng, D. Matthieu, M, Dirk, Experiments and modeling of anisotropic alumina extrusions under multi-axial loading – Part II: Ductile fracture, Int. J. Plast., Vol. 32-33, pp.36-58, (2012).

DOI: 10.1016/j.ijplas.2011.11.001

Google Scholar

[44] J. Zhou, X. Gao, M. Hayden, J.A. Joyce, Modeling the ductile fracture behavior of an aluminum alloy 5083-H116 including the residual stress effect, Eng. Fract. Mech., Vol. 85, pp.103-116, (2012).

DOI: 10.1016/j.engfracmech.2012.02.014

Google Scholar

[45] A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth-I. Yield criteria and flow rules for porous ductile media, J. Eng. Mater-T. Asme, Vol. 99, pp.2-15, (1977).

DOI: 10.2172/7351470

Google Scholar

[46] A.L. Gurson, Porous rigid-plastic materials containing rigid inclusions-yield function, plastic potential and void nucleation, In. Proc. Int. conf. Fracture. ed. D.M.R. Taplin, Vol. 2A, pp.357-364, Pergamon Press, (1977).

DOI: 10.1016/b978-0-08-022138-0.50058-7

Google Scholar

[47] Y. Sun, D. Wang, A lower bound approach to the yield loci of porous materials, Acta Mech. Sin., Vol. 5, No. 3, pp.237-243, (1989).

Google Scholar

[48] A. Lazzeri, C.B. Bucknall, Dilatational bands in rubber-toughened polymers, J. Mater. Sci., Vol. 28, No. 24, pp.6799-6808, (1993).

DOI: 10.1007/bf00356433

Google Scholar

[49] H.Y. Jeong, J. Pan, A macroscopic constitutive law for porous solid with pressure-sensitive matrices and its implications to plastic flow localization, Int. J. Sol. Struct., Vol. 32, No. 24, pp.3669-3691, (1995).

DOI: 10.1016/0020-7683(95)00009-y

Google Scholar

[50] A.C. Steenbrink, E. Van der Giessen, P.D. Wu, Void growth in glassy polymers, J. Mech. Phys. Solids, Vol. 45, No. 3, pp.405-437, (1997).

DOI: 10.1016/s0022-5096(96)00093-2

Google Scholar

[51] H.Y. Jeong, A new yield function and a hydrostatic stress-controlled void nucleation model for porous solids with pressure-sensitive matrices, Int. J. Sol. Struct., Vol. 39, No. 5, pp.1385-1403, (2002).

DOI: 10.1016/s0020-7683(01)00260-8

Google Scholar

[52] Th. Seelig, E. Van der Giessen, Localized plastic deformation in ternary polymer blends, Int. J. Sol. Struct., Vol. 39, No. 13-14, pp.3505-3522, (2002).

DOI: 10.1016/s0020-7683(02)00161-0

Google Scholar

[53] P.J. Sanchez, A.E. Huespe, J. Oliver, On some topics for the numerical simulation of ductile fracture, Int. J. Plast., Vol. 24, No. 6, pp.1008-1038, (2008).

DOI: 10.1016/j.ijplas.2007.08.004

Google Scholar

[54] D. Heikens, S.D. Sjoerdsma, W.J. Coumans, A mathematical relation between volume strain, elongational strain and stress in homogenous deformation, J. Mater. Sci., Vol. 16, No. 2, 429-432, (1981).

DOI: 10.1007/bf00738633

Google Scholar

[55] P.W. Bridgman, Studies in Large Plastic Flow and Fracture, McGraw- Hill, New York, (1952).

Google Scholar