[1]
J.T. Oden, Finite elements of non linear continua, McGraw-Hill New York, (1972).
Google Scholar
[2]
M.A. Crisfield, Non-Linear finite element analysis of solids and structure, Volume 1, Wiley, New York, (1991).
Google Scholar
[3]
M. Kleiber, Incremental finite element modeling in non linear solid mechanics, Ellis Horwood limited, John Willey, (1989).
Google Scholar
[4]
Z.H. Zhong, Finite element procedures for contact impact problems, Oxford University Press, New York, (1993).
Google Scholar
[5]
O.C. Zienkiewwicz and R.L. Taylor, The finite element method, McGraw-Hill New York, (1991).
Google Scholar
[6]
K.J. Bathe, Finite element procedures, Prentice Hall, Englewood Cliffs, (1996).
Google Scholar
[7]
W.F. Chen and E.M. Liu, Stability design of steel frames, CRC Press, Boca Raton, Fla, (1991).
Google Scholar
[8]
E. Spacone, et al, Mixed formulation of nonlinear beam finite element, Computer and structure, Volume 58, Issue 1, (1996) 71-83.
Google Scholar
[9]
A. Neuenhofer and F. C. Filippou, Evaluation of nonlinear frame finite element models, Journal of structural engineering, Volume 123, Issue 7, (1997) 958-966.
DOI: 10.1061/(asce)0733-9445(1997)123:7(958)
Google Scholar
[10]
P. C. Kohnke, Large deflection analysis of frame structures by fictitious forces. International journal of numerical methods in engineering, Volume 12, Issue 8, (1978) 1279-1294.
DOI: 10.1002/nme.1620120806
Google Scholar
[11]
J. Backlund, Large deflection analysis of elasto-plastic beams and frames. International journal of mechanical sciences, Volume 18, Issue 6, (1976) 269-277.
DOI: 10.1016/0020-7403(76)90028-x
Google Scholar
[12]
I. Carol, and J. Murcia, Nonlinear time dependent analysis of planar frames using an exact formulation -1: Theory, Computer and structure, Volume 33, Issue 1, (1989) 79-87.
DOI: 10.1016/0045-7949(89)90131-4
Google Scholar
[13]
S. Kaba and S.A. Mahin, Refined modelling of reinforced concrete column for seisme analysis. EERC report 84/03, Earth quake engineering research center, University of California, Berkeley (1984).
Google Scholar
[14]
C.A. Zeris and S.A. Mahin, Analysis of reinforced concrete beam-columns under uniaxial excitation. Journal of structural engineering, ASCE, Volume 114, Issue 4, (1988) 804-820.
DOI: 10.1061/(asce)0733-9445(1988)114:4(804)
Google Scholar
[15]
C.A. Zeris and S.A. Mahin, Behaviour of reinforced concrete structures subjected to biaxial excitation Journal of structural engineering, ASCE, Volume 117, Issue 9, (1991) 2657-2673.
DOI: 10.1061/(asce)0733-9445(1991)117:9(2657)
Google Scholar
[16]
D.J. Dawe, Finite deflection analysis of shallow circles by the discrete element method. International journal of numerical methods of engineering, Volume 3, Issue 4, (1971) 529-552.
DOI: 10.1002/nme.1620030408
Google Scholar
[17]
T. Matsui and O.A Matsuoka, new finite element scheme for instability analysis of thin shells. International journal of numerical methods of engineering, Volume 10, Issue 1, (1976) 145-170.
DOI: 10.1002/nme.1620100112
Google Scholar
[18]
M. Epstein and D. W. Murray, Large deformation in plane analysis of elastic beams. Computer structure, Volume 6, Issue 1, (1976) 1-9.
Google Scholar
[19]
H. R. Milner, Accurate Finite element analysis of large displacement in skeletal structures, Computer structure, Volume 14, Isues 3-4, (1981) 205-210.
DOI: 10.1016/0045-7949(81)90005-5
Google Scholar
[20]
J. R. Thomas, Hughes and Belytschko, Ted, Non linear finite element analysis, Volume 1 August (1998) 17-21 in Berlin, Germany.
Google Scholar
[21]
O.C. Zienkiewicz and G. C. Nayak, A general approach to problems of plasticity and large deformation using isoparametric element, Proc. Conf. Matrix Method Structure Mechanics, Wright -Patterson AFB, Ohio.(1971) (pub 1973).
Google Scholar
[22]
R.D. Wood, The application of finite element methods to geometrically nonlinear Analysis, P.h.d Thesis University of Wales; Swansea C/Ph/20/73, (1973).
Google Scholar
[23]
Y.V. Novozhilov, Theory of elasticity, Pergamon Press Oxford, (1961).
Google Scholar
[24]
Y.C. Fung, Foundation of solid mechanics, Prentice Hall. Englewood Cliff New Jersy, (1965).
Google Scholar
[25]
G.C. Nayak, Plasticity and large deformation problems by the finite element method, P.h.d Thesis University of Wales, Swansea C/Ph/15/71, (1971).
Google Scholar
[26]
R.D. Wood and O.C. Zienkiewicz, Geometrically nonlinear finite element analysis of beams, frames, arches and axisymmetric shells, Computer and structures, Volume 7, Issue 6, (1977) 725-735.
DOI: 10.1016/0045-7949(77)90027-x
Google Scholar
[27]
O.C. Zienkiewicz, The finite element method (3rd edn), Mc-Graw-Hill, New York, (1977).
Google Scholar
[28]
K.J. Bathe and A.P. Cimento, Some practical procedures for the solution of nonlinear finite element equations, Computer Methods. App. Mech. Engineering, Volume 22, Issue 1, (1980) 59-85.
DOI: 10.1016/0045-7825(80)90051-1
Google Scholar
[29]
G. A. Mohr and H. R. Milner, Finite element analysis of large displacements in flexural systems. Computer structure, Volume 13, Issue 14, (1981) 533-536.
DOI: 10.1016/0045-7949(81)90048-1
Google Scholar
[30]
ANSYS, Engineering Analysis Systems, Swanson Analysis Systems Inc, Box 65, Houston, PA, (1987).
Google Scholar
[31]
S. Timoshenko, Theory of elastic Stability, McGraw Hill book Co, New York, (1936).
Google Scholar
[32]
S. Timoshenko and J.N. Goudier, Theory of elasticity, McGraw Hill, NY, (1951).
Google Scholar
[33]
R. Levy and D.R. Brill, Optimisation for Exact Stability of 2-Bar Trusses, Computer utilization in Structural Engineering, (edited by James K. Nelson J.R) American Society of civil engineering New York, (1989) 520-529.
Google Scholar
[34]
M.A. Biot, Mechanics of Incremental Deformation, John Wiley and Sons, New York, (1965).
Google Scholar