Analysis of Crack Propagation by Bonded Composite for Different Patch Shapes Repairs in Marine Structures: A Numerical Analysis

Article Preview

Abstract:

This paper focuses on the cracks repair of A5083 aluminum alloy widely used in marine structures. Indeed, these latter are under continuous high loadings which, with time, cause fatigue of the material and finally damage and crack propagation. Composite patches play an important role in repairing damaged structures by cracking in order to restore them as much as possible to their original operating state. In this study, we compare performance and efficiency between two patches made in carbon-epoxy and boron-epoxy with four different shapes: circular, rectangular, trapezoidal and elliptic. The loading and crack lengths effects on the performance of these patches were also studied. This numerical investigation was carried out to highlight the evolution of the J-integral as a function of the applied load, the geometrical shape of the patch and the crack length for both types of composites. According to the obtained results the best performance for the improvement of crack propagation resistance in aluminum alloy marine structures was achieved by using a circular patch in boron-epoxy.

You might also be interested in these eBooks

Info:

Pages:

175-184

Citation:

Online since:

March 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Davis, Corrosion of aluminum and aluminum alloys. USA: ASM International; (1999) 25-49.

Google Scholar

[2] S. Jain, J.L. Hudson, J.R. Scully, Effects of constituent particles and sensitization on surface spreading of intergranular corrosion on a sensitized AA5083 alloy, Electrochimica Acta 108 (2013) 253-264.

DOI: 10.1016/j.electacta.2013.06.036

Google Scholar

[3] R.L. Whelchel, T.H. Sanders Jr, N.N. Thadhani, Scr. Mater., 92 (2014) 59-62.

Google Scholar

[4] H. Ezuber, A. El-Hood, F. El-Shawesh, A study on the corrosion behavior of aluminum alloys in seawater, Mater. Des. 29 (2008) 801-805.

DOI: 10.1016/j.matdes.2007.01.021

Google Scholar

[5] D. Ouinas, B. Bachir Bouiadjra, N. Benderdouche, Interaction effect of a main crack emanating from a semicircular notch and a micro crack, Comput. Mater. Sci. 43 (2008) 1155-1159.

DOI: 10.1016/j.commatsci.2008.03.014

Google Scholar

[6] D. Ouinas ,B. Bachir Bouiadjra, N. Benderdouche, B. Ait Saadi, Numerical modeling of the interaction macro–multimicrocracks in a plate under tensile stress, J. Comput. Sci. 2 (2011) 153– 164.

DOI: 10.1016/j.jocs.2010.12.009

Google Scholar

[7] T. Achour, B. Bachir Bouiadjra , B. Serier, Numerical analysis of the performances of the Bonded composite patch for reducing stress concentration and repairing cracks at notch, Comput. Mater. Sci. 28 (2003) 41-48.

DOI: 10.1016/s0927-0256(03)00054-5

Google Scholar

[8] A.A. Baker, R. Jones (Eds.), Bonded Repair of Aircraft Structures, Martinus Nijhoff Publishers, (1988).

Google Scholar

[9] A.A. Baker, R.J. Chester, Recent advances in bonded composite repair technology for metallic aircraft components, in: Proceeding of the International Conference on Advanced Composite Materials, 1993, p.45–49.

Google Scholar

[10] A.A. Baker, Fatigue studies related to the certification of composite crack patching for primary metallic aircraft structure, FAA-NASA Symposium on Continued Airworthiness of Aircraft Structures, Atlanta, 28–30 August (1996).

Google Scholar

[11] A.A. Baker, On the certification of bonded composite repairs primary aircraft structures, in: Proceeding of the Eleventh International of composite Materials (ICCM-11). Gold Coast, Australia, (1997).

Google Scholar

[12] A.A. Baker, R.J. Callinan, M.J. Davis, R. Jones, J.G. Williams, Repair of mirage iii aircraft using BFRP crack patching technology, Theor. App. Fract. Mech. 2 (1984) 1-16.

DOI: 10.1016/0167-8442(84)90035-1

Google Scholar

[13] A.A. Baker, Repair of cracked or defective metallic components with advanced fiber composites an overview of Australian work, Compos. Struct. 2 (1984) 153–181.

DOI: 10.1016/0263-8223(84)90025-4

Google Scholar

[14] T. Nateche, M. Hadj Meliani, Shafique M.A., Khan, Y.G. Matvienko, N. Merah, G. Pluvinage, Residual harmfulness of a defect after repairing by a composite patch. Eng. Fail. Anal. 48 (2015) 166–173.

DOI: 10.1016/j.engfailanal.2014.11.010

Google Scholar

[15] A. Riccio , R. Ricchiuto, F. Di Caprio, A. Sellitto, A. Raimondo, Numerical investigation of constitutive material models on bonded joints in scarf repaired composite laminates, Eng. Fract. Mech. 15 (2017), 91-106.

DOI: 10.1016/j.engfracmech.2017.01.003

Google Scholar

[16] J.J. Schubbe, S.H. Bolstad, S. Reyes, Fatigue crack growth behavior of aerospace and ship grade aluminum repaired with composite patches in a corrosive environment, Compos. Struct. 144 (2016) 44-56.

DOI: 10.1016/j.compstruct.2016.01.107

Google Scholar

[17] J. J. Schubbe, S. Mall, Modeling of cracked thick metallic structure with bondedComposite patch repair using three-layer technique, Compos. Struct. 45 (1999):185-193.

DOI: 10.1016/s0263-8223(99)00025-2

Google Scholar

[18] A.A. Baker, Repair of cracked or defective metallic aircraft components with advanced Fiber composites—an overview of Australian works, Compos. Struct. 2 (1984):153-181.

DOI: 10.1016/0263-8223(84)90025-4

Google Scholar

[19] A.A. Baker, Bonded composite repair of fatigue-cracked primary aircraft structure, Compos. Struct. 47 (1999): 431-443.

DOI: 10.1016/s0263-8223(00)00011-8

Google Scholar

[20] Schubbe, J.J., and S. Mall, Investigation of a cracked thick aluminum panel repaired with a Bonded composite patch, Eng. Fract. Mech. 63 (1999) 305-323.

DOI: 10.1016/s0013-7944(99)00032-6

Google Scholar

[21] A.A. Baker, Fatigue studies related to the certification of composite crack patching for primary metallic aircraft structure, IN: Presented at FAA–NASA symposium on continued airworthiness of aircraft structures, Atlanta; 1996. p.28–30.

Google Scholar

[22] A.A. Baker, Repair of cracked or defective metallic aircraft components with advanced fiber composites, an overview of Australian work. J. Compos. Struct. 2 (1984) 153-81.

DOI: 10.1016/0263-8223(84)90025-4

Google Scholar

[23] Baker A, Bonded composite repair of metallic aircraft components overview of Australian activities. In: AGARD-CP-550; 1995. p.1–14.

Google Scholar

[24] A. Baker, Bonded composite repair of fatigue-cracked primary aircraft structure, J. Compos. Struct. 47 (1999) 431-43.

DOI: 10.1016/s0263-8223(00)00011-8

Google Scholar

[25] B. Bachir Bouiadjra, M. Fari Bouanani, A. Albedah, F. Benyahia, M. Es-Saheb,Comparison between rectangular and trapezoidal bonded composite repairs in aircraft structures: A numerical analysis, Mater. Des. 32 (2011) 3161–3166.

DOI: 10.1016/j.matdes.2011.02.053

Google Scholar

[26] Mahadesh Kumar A, Hakeem S, Optimum design of symmetric composite patch repair to center cracked metallic sheet, J. Compos. Struct. 49 (2000) 285-92.

DOI: 10.1016/s0263-8223(00)00005-2

Google Scholar

[27] Breitzman TD, Iarve EV, Cook BM, Schoeppner GA, Lipton RP, Optimization of a composite scarf repair patch under tensile loading, Compos. Part A: Appl. Sci. Manuf. 40 (2009) 1921-30.

DOI: 10.1016/j.compositesa.2009.04.033

Google Scholar

[28] Ouinas D, Hebbar A, Bachir Bouiadjra B, Belhouari M, Serier B, Numerical analysis of the stress intensity factors for repaired cracks from a notch with bonded composite semicircular patch, Compos. B. Eng. 40 (2009) 804-10.

DOI: 10.1016/j.compositesb.2009.06.002

Google Scholar

[29] Brighenti Roberto, Carpinteri Andrea, Vantadori Sabrina. A genetic algorithm applied to optimization of patch repair for cracked plates, Comput. Meth. Appl. Mech. Eng. 196 (2006) 466-75.

DOI: 10.1016/j.cma.2006.07.004

Google Scholar

[30] Rachid Mhamdia, Serier B, Bachir Bouiadjra B, Belhouari M, Numerical analysis of the patch shape effects on the performances of bonded composite repair in aircraft structures, Compos: Part B 43 (2012) 391-7.

DOI: 10.1016/j.compositesb.2011.08.047

Google Scholar

[31] Albedah A, BachirBouiadjra B, Mhamdia R, Benyahia F, Es-Saheb M, Comparison between double and single sided bonded composite repair with circular shape, Mater. Des. 32 (2011) 996-1000.

DOI: 10.1016/j.matdes.2010.08.022

Google Scholar

[32] Katnam KB, Da Silva LFM, Young TM. Bonded repair of composite aircraft structures: a review of scientific challenges and opportunities, Prog. Aerosp. Sci. 61 (2013) 26-42.

DOI: 10.1016/j.paerosci.2013.03.003

Google Scholar

[33] D. Ouinas, B. Serier, B. Bachir Bouiadjra, T. Achour, Modélisation de l'effet de l'entailles dans une plaque sollicitée en traction, séminaire JUSTA, Université de Guelma, 24 et 25 Mai (2003)-Algérie.

DOI: 10.1051/meca:2005064

Google Scholar

[34] ABAQUS/CAE Ver 6.9 User's Manual. Hibbitt, Karlsson & Sorensen, Inc.; (2007).

Google Scholar

[35] S.M. Fekih, A. Albedah, F. Benyahia, M. Belhouari, B. Bachir Bouiadjra, A. Miloudi, Optimisation of the sizes of bonded composite repair in aircraft structures, Mater. Des. 41 (2012) 171–176.

DOI: 10.1016/j.matdes.2012.04.025

Google Scholar

[36] Heller M, Kaye R, Shape optimization for bonded repairs. In: Baker AA, Jones R, Rose LRF Editors, Advances in the bonded composite repair of metallic aircraft structure, (2002) 269-315.

DOI: 10.1016/b978-008042699-0/50012-7

Google Scholar

[37] Majid Jamal-Omidi, Mehdi Falah and Davood Taherifar, 3-D fracture analysis of cracked aluminum plates repaired with single and double composite patches using XFEM, Struct. Eng. Mech., 50 (2014) 525-539.

DOI: 10.12989/sem.2014.50.4.525

Google Scholar