[1]
J. Davis, Corrosion of aluminum and aluminum alloys. USA: ASM International; (1999) 25-49.
Google Scholar
[2]
S. Jain, J.L. Hudson, J.R. Scully, Effects of constituent particles and sensitization on surface spreading of intergranular corrosion on a sensitized AA5083 alloy, Electrochimica Acta 108 (2013) 253-264.
DOI: 10.1016/j.electacta.2013.06.036
Google Scholar
[3]
R.L. Whelchel, T.H. Sanders Jr, N.N. Thadhani, Scr. Mater., 92 (2014) 59-62.
Google Scholar
[4]
H. Ezuber, A. El-Hood, F. El-Shawesh, A study on the corrosion behavior of aluminum alloys in seawater, Mater. Des. 29 (2008) 801-805.
DOI: 10.1016/j.matdes.2007.01.021
Google Scholar
[5]
D. Ouinas, B. Bachir Bouiadjra, N. Benderdouche, Interaction effect of a main crack emanating from a semicircular notch and a micro crack, Comput. Mater. Sci. 43 (2008) 1155-1159.
DOI: 10.1016/j.commatsci.2008.03.014
Google Scholar
[6]
D. Ouinas ,B. Bachir Bouiadjra, N. Benderdouche, B. Ait Saadi, Numerical modeling of the interaction macro–multimicrocracks in a plate under tensile stress, J. Comput. Sci. 2 (2011) 153– 164.
DOI: 10.1016/j.jocs.2010.12.009
Google Scholar
[7]
T. Achour, B. Bachir Bouiadjra , B. Serier, Numerical analysis of the performances of the Bonded composite patch for reducing stress concentration and repairing cracks at notch, Comput. Mater. Sci. 28 (2003) 41-48.
DOI: 10.1016/s0927-0256(03)00054-5
Google Scholar
[8]
A.A. Baker, R. Jones (Eds.), Bonded Repair of Aircraft Structures, Martinus Nijhoff Publishers, (1988).
Google Scholar
[9]
A.A. Baker, R.J. Chester, Recent advances in bonded composite repair technology for metallic aircraft components, in: Proceeding of the International Conference on Advanced Composite Materials, 1993, p.45–49.
Google Scholar
[10]
A.A. Baker, Fatigue studies related to the certification of composite crack patching for primary metallic aircraft structure, FAA-NASA Symposium on Continued Airworthiness of Aircraft Structures, Atlanta, 28–30 August (1996).
Google Scholar
[11]
A.A. Baker, On the certification of bonded composite repairs primary aircraft structures, in: Proceeding of the Eleventh International of composite Materials (ICCM-11). Gold Coast, Australia, (1997).
Google Scholar
[12]
A.A. Baker, R.J. Callinan, M.J. Davis, R. Jones, J.G. Williams, Repair of mirage iii aircraft using BFRP crack patching technology, Theor. App. Fract. Mech. 2 (1984) 1-16.
DOI: 10.1016/0167-8442(84)90035-1
Google Scholar
[13]
A.A. Baker, Repair of cracked or defective metallic components with advanced fiber composites an overview of Australian work, Compos. Struct. 2 (1984) 153–181.
DOI: 10.1016/0263-8223(84)90025-4
Google Scholar
[14]
T. Nateche, M. Hadj Meliani, Shafique M.A., Khan, Y.G. Matvienko, N. Merah, G. Pluvinage, Residual harmfulness of a defect after repairing by a composite patch. Eng. Fail. Anal. 48 (2015) 166–173.
DOI: 10.1016/j.engfailanal.2014.11.010
Google Scholar
[15]
A. Riccio , R. Ricchiuto, F. Di Caprio, A. Sellitto, A. Raimondo, Numerical investigation of constitutive material models on bonded joints in scarf repaired composite laminates, Eng. Fract. Mech. 15 (2017), 91-106.
DOI: 10.1016/j.engfracmech.2017.01.003
Google Scholar
[16]
J.J. Schubbe, S.H. Bolstad, S. Reyes, Fatigue crack growth behavior of aerospace and ship grade aluminum repaired with composite patches in a corrosive environment, Compos. Struct. 144 (2016) 44-56.
DOI: 10.1016/j.compstruct.2016.01.107
Google Scholar
[17]
J. J. Schubbe, S. Mall, Modeling of cracked thick metallic structure with bondedComposite patch repair using three-layer technique, Compos. Struct. 45 (1999):185-193.
DOI: 10.1016/s0263-8223(99)00025-2
Google Scholar
[18]
A.A. Baker, Repair of cracked or defective metallic aircraft components with advanced Fiber composites—an overview of Australian works, Compos. Struct. 2 (1984):153-181.
DOI: 10.1016/0263-8223(84)90025-4
Google Scholar
[19]
A.A. Baker, Bonded composite repair of fatigue-cracked primary aircraft structure, Compos. Struct. 47 (1999): 431-443.
DOI: 10.1016/s0263-8223(00)00011-8
Google Scholar
[20]
Schubbe, J.J., and S. Mall, Investigation of a cracked thick aluminum panel repaired with a Bonded composite patch, Eng. Fract. Mech. 63 (1999) 305-323.
DOI: 10.1016/s0013-7944(99)00032-6
Google Scholar
[21]
A.A. Baker, Fatigue studies related to the certification of composite crack patching for primary metallic aircraft structure, IN: Presented at FAA–NASA symposium on continued airworthiness of aircraft structures, Atlanta; 1996. p.28–30.
Google Scholar
[22]
A.A. Baker, Repair of cracked or defective metallic aircraft components with advanced fiber composites, an overview of Australian work. J. Compos. Struct. 2 (1984) 153-81.
DOI: 10.1016/0263-8223(84)90025-4
Google Scholar
[23]
Baker A, Bonded composite repair of metallic aircraft components overview of Australian activities. In: AGARD-CP-550; 1995. p.1–14.
Google Scholar
[24]
A. Baker, Bonded composite repair of fatigue-cracked primary aircraft structure, J. Compos. Struct. 47 (1999) 431-43.
DOI: 10.1016/s0263-8223(00)00011-8
Google Scholar
[25]
B. Bachir Bouiadjra, M. Fari Bouanani, A. Albedah, F. Benyahia, M. Es-Saheb,Comparison between rectangular and trapezoidal bonded composite repairs in aircraft structures: A numerical analysis, Mater. Des. 32 (2011) 3161–3166.
DOI: 10.1016/j.matdes.2011.02.053
Google Scholar
[26]
Mahadesh Kumar A, Hakeem S, Optimum design of symmetric composite patch repair to center cracked metallic sheet, J. Compos. Struct. 49 (2000) 285-92.
DOI: 10.1016/s0263-8223(00)00005-2
Google Scholar
[27]
Breitzman TD, Iarve EV, Cook BM, Schoeppner GA, Lipton RP, Optimization of a composite scarf repair patch under tensile loading, Compos. Part A: Appl. Sci. Manuf. 40 (2009) 1921-30.
DOI: 10.1016/j.compositesa.2009.04.033
Google Scholar
[28]
Ouinas D, Hebbar A, Bachir Bouiadjra B, Belhouari M, Serier B, Numerical analysis of the stress intensity factors for repaired cracks from a notch with bonded composite semicircular patch, Compos. B. Eng. 40 (2009) 804-10.
DOI: 10.1016/j.compositesb.2009.06.002
Google Scholar
[29]
Brighenti Roberto, Carpinteri Andrea, Vantadori Sabrina. A genetic algorithm applied to optimization of patch repair for cracked plates, Comput. Meth. Appl. Mech. Eng. 196 (2006) 466-75.
DOI: 10.1016/j.cma.2006.07.004
Google Scholar
[30]
Rachid Mhamdia, Serier B, Bachir Bouiadjra B, Belhouari M, Numerical analysis of the patch shape effects on the performances of bonded composite repair in aircraft structures, Compos: Part B 43 (2012) 391-7.
DOI: 10.1016/j.compositesb.2011.08.047
Google Scholar
[31]
Albedah A, BachirBouiadjra B, Mhamdia R, Benyahia F, Es-Saheb M, Comparison between double and single sided bonded composite repair with circular shape, Mater. Des. 32 (2011) 996-1000.
DOI: 10.1016/j.matdes.2010.08.022
Google Scholar
[32]
Katnam KB, Da Silva LFM, Young TM. Bonded repair of composite aircraft structures: a review of scientific challenges and opportunities, Prog. Aerosp. Sci. 61 (2013) 26-42.
DOI: 10.1016/j.paerosci.2013.03.003
Google Scholar
[33]
D. Ouinas, B. Serier, B. Bachir Bouiadjra, T. Achour, Modélisation de l'effet de l'entailles dans une plaque sollicitée en traction, séminaire JUSTA, Université de Guelma, 24 et 25 Mai (2003)-Algérie.
DOI: 10.1051/meca:2005064
Google Scholar
[34]
ABAQUS/CAE Ver 6.9 User's Manual. Hibbitt, Karlsson & Sorensen, Inc.; (2007).
Google Scholar
[35]
S.M. Fekih, A. Albedah, F. Benyahia, M. Belhouari, B. Bachir Bouiadjra, A. Miloudi, Optimisation of the sizes of bonded composite repair in aircraft structures, Mater. Des. 41 (2012) 171–176.
DOI: 10.1016/j.matdes.2012.04.025
Google Scholar
[36]
Heller M, Kaye R, Shape optimization for bonded repairs. In: Baker AA, Jones R, Rose LRF Editors, Advances in the bonded composite repair of metallic aircraft structure, (2002) 269-315.
DOI: 10.1016/b978-008042699-0/50012-7
Google Scholar
[37]
Majid Jamal-Omidi, Mehdi Falah and Davood Taherifar, 3-D fracture analysis of cracked aluminum plates repaired with single and double composite patches using XFEM, Struct. Eng. Mech., 50 (2014) 525-539.
DOI: 10.12989/sem.2014.50.4.525
Google Scholar