Experimental Characterization of Hybrid and Non-Hybrid Polymer Composites at Elevated Temperatures

Article Preview

Abstract:

Glass and carbon fibre composites and hybrid glass/carbon composites are materials often used in wind turbine blades. In Africa wind turbines have to operate in warm climates. The present study presents the results of an experimental study on the mechanical properties of these composites at elevated temperatures. For this purpose, the composite specimens are fabricated by hand lay-up process to investigate their static and dynamic properties at high temperatures. The properties studied include Inter-laminar Shear Stress (ILSS), Dynamic Mechanical Properties (DMA) such as storage modulus, loss modulus and loss factor using ASTM standards. The inter-laminar shear failure strength of carbon fibre and hybrid glass-carbon fibre composites are found to be close whereas the glass transition and damping behavior of the hybrid composites are higher making them suitable for wind turbine blades operating at high temperatures. Short Beam Shear (SBS) test data are evaluated using chi-square goodness of fit statistical tests and the correlation coefficients from linear regression analysis are determined. Normal, lognormal and 2-parameter Weibull statistical distributions are used at 5% significant level.

You might also be interested in these eBooks

Info:

Pages:

37-52

Citation:

Online since:

June 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. S. Radebe and S. Adali, Minimum cost design of hybrid cross-ply cylinders with uncertain material properties subject to external pressure, Ocean Engineering, 38 (2014) 310-317.

DOI: 10.1016/j.oceaneng.2014.06.010

Google Scholar

[2] D. Rathore and B. C. Ray, Durability and integrity studies of environmentally conditioned interfaces in fibrous polymeric composites: Critical concepts and comments, Advances in Colloid and Interface Science, 209 (2014) 68–83.

DOI: 10.1016/j.cis.2013.12.014

Google Scholar

[3] B .C. Ray, Thermal shock on interfacial adhesion of thermally conditioned glass fiber/epoxy composites, Materials Letters, 58 (2004) 2175–2177.

DOI: 10.1016/j.matlet.2004.01.035

Google Scholar

[4] D. K. Rathore, B. C. Ray and S. Sethi, Effects of temperature and loading speed on interface-dominated strength in fibre/polymer composites: An evaluation for in-situ, Materials and Design, 65 (2015) 617–626.

DOI: 10.1016/j.matdes.2014.09.053

Google Scholar

[5] B. C. Ray and S. Sethi, An assessment of mechanical behavior and fractography study of glass/epoxy composites at different temperatures and loading speeds, Materials and Design, 64 (2014) 160–165.

DOI: 10.1016/j.matdes.2014.07.017

Google Scholar

[6] ASTM International, ASTM Standard D 2344/D 2344M, Standard test method for short-beam strength of polymer matrix composite materials and their, USA, (2000).

Google Scholar

[7] A. Makeev and Y. He, Nonlinear shear behavior and interlaminar shear strength of unidirectional polymer matrix composites: A numerical study, International Journal of Solids and Structures, 51 (2014) 1263–1273.

DOI: 10.1016/j.ijsolstr.2013.12.014

Google Scholar

[8] R. Matsuyamab, M. Sakaib and M. Lia, Interlaminar shear strength of C/C-composites: the dependence on test methods, Carbon, 37 (1999) 1749–1757.

DOI: 10.1016/s0008-6223(99)00049-4

Google Scholar

[9] S. F. M. de Almeida, M. C. Rezende and M. L. Costa, The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates, Composites Science and Technology, 61 (2001) 2101–2108.

DOI: 10.1016/s0266-3538(01)00157-9

Google Scholar

[10] S. L. Donaldson and R. Y. Kim, Experimental and analytical studies on the damage initiation in composite laminates at cryogenic temperatures, Composite Structures, 76 (2006) 62–66.

DOI: 10.1016/j.compstruct.2006.06.009

Google Scholar

[11] M. Hojo, S. Ochiaia, K. Schulte, M. Ando and B. Fiedler, Failure behavior of an epoxy matrix under different kinds of static loading, Composites Science and Technology, 61 (2001) 1615–1624.

DOI: 10.1016/s0266-3538(01)00057-4

Google Scholar

[12] B. C. Ray, Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites, Journal of Colloid and Interface Science, 298 (2006) 111–117.

DOI: 10.1016/j.jcis.2005.12.023

Google Scholar

[13] R. Ramesh, K. Padmanabhan and R. Murugan, Investigation on static and dynamic mechanical properties of epoxy based woven fabric glass/carbon hybrid composite laminates, Procedia Engineering, 97 (2014) 459–468.

DOI: 10.1016/j.proeng.2014.12.270

Google Scholar

[14] R. F. Gibson and I. C. Finegan, Recent research on enhancement of damping in polymer composites, Composite Structures, 44 (1999) 89-98.

DOI: 10.1016/s0263-8223(98)00073-7

Google Scholar

[15] D. W. Radford and J. D. D. Melo, Time and temperature dependence of the viscoelastic properties of CFRP by dynamic mechanical analysis, Composite Structures, 70 (2005) 240–253.

DOI: 10.1016/j.compstruct.2004.08.025

Google Scholar

[16] M. H. Santare, S. G. Advani and Z. Fan, Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes, Composites Part A, 39 (2008) 540–554.

DOI: 10.1016/j.compositesa.2007.11.013

Google Scholar

[17] K. P. Menard, Dynamic Mechanical Analysis - A Practical Introduction, Florida, USA, (1999).

Google Scholar

[18] D. K. Rathore, R. K. Prusty, S. C. Mohanty, B. P. Singh and B. C Ray, In-situ elevated temperature flexural and creep response of inter-ply glass/carbon hybrid FRP composites, Mechanics of Materials, 105 (2017) 99-111.

DOI: 10.1016/j.mechmat.2016.11.013

Google Scholar

[19] ASTM International, ASTM standard D 3171, Standard test method for matrix digestion, USA, (1999).

Google Scholar

[20] J.A. Quinn. Composites - Design Manual. Liverpool, L25 4SY, England, (2002).

Google Scholar

[21] J. R. Correia, M. M. Gomes, J. M. Pires and F. A. Branco, Mechanical behaviour of pultruded glass fibre reinforced polymer composites at elevated temperature: Experiments and model assessment, Composite Structures, 98 (2013) 303-313.

DOI: 10.1016/j.compstruct.2012.10.051

Google Scholar

[22] L. Lee, V. M. Karbhari and R. Atadero, Consideration of material variability in reliability analysis of FRP strengthened bridge decks, Composite Structures, 70 (2005) 430–443.

DOI: 10.1016/j.compstruct.2004.09.003

Google Scholar

[23] R. E. Walpole, R. H. Myers, S. L. Myers and K. Ye, Probability and Statistics for Engineers and Scientists, 8th edition, Pearson Prentice Hall, Upper Saddle River, N. I., (2007).

Google Scholar