[1]
I. S. Radebe and S. Adali, Minimum cost design of hybrid cross-ply cylinders with uncertain material properties subject to external pressure, Ocean Engineering, 38 (2014) 310-317.
DOI: 10.1016/j.oceaneng.2014.06.010
Google Scholar
[2]
D. Rathore and B. C. Ray, Durability and integrity studies of environmentally conditioned interfaces in fibrous polymeric composites: Critical concepts and comments, Advances in Colloid and Interface Science, 209 (2014) 68–83.
DOI: 10.1016/j.cis.2013.12.014
Google Scholar
[3]
B .C. Ray, Thermal shock on interfacial adhesion of thermally conditioned glass fiber/epoxy composites, Materials Letters, 58 (2004) 2175–2177.
DOI: 10.1016/j.matlet.2004.01.035
Google Scholar
[4]
D. K. Rathore, B. C. Ray and S. Sethi, Effects of temperature and loading speed on interface-dominated strength in fibre/polymer composites: An evaluation for in-situ, Materials and Design, 65 (2015) 617–626.
DOI: 10.1016/j.matdes.2014.09.053
Google Scholar
[5]
B. C. Ray and S. Sethi, An assessment of mechanical behavior and fractography study of glass/epoxy composites at different temperatures and loading speeds, Materials and Design, 64 (2014) 160–165.
DOI: 10.1016/j.matdes.2014.07.017
Google Scholar
[6]
ASTM International, ASTM Standard D 2344/D 2344M, Standard test method for short-beam strength of polymer matrix composite materials and their, USA, (2000).
Google Scholar
[7]
A. Makeev and Y. He, Nonlinear shear behavior and interlaminar shear strength of unidirectional polymer matrix composites: A numerical study, International Journal of Solids and Structures, 51 (2014) 1263–1273.
DOI: 10.1016/j.ijsolstr.2013.12.014
Google Scholar
[8]
R. Matsuyamab, M. Sakaib and M. Lia, Interlaminar shear strength of C/C-composites: the dependence on test methods, Carbon, 37 (1999) 1749–1757.
DOI: 10.1016/s0008-6223(99)00049-4
Google Scholar
[9]
S. F. M. de Almeida, M. C. Rezende and M. L. Costa, The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates, Composites Science and Technology, 61 (2001) 2101–2108.
DOI: 10.1016/s0266-3538(01)00157-9
Google Scholar
[10]
S. L. Donaldson and R. Y. Kim, Experimental and analytical studies on the damage initiation in composite laminates at cryogenic temperatures, Composite Structures, 76 (2006) 62–66.
DOI: 10.1016/j.compstruct.2006.06.009
Google Scholar
[11]
M. Hojo, S. Ochiaia, K. Schulte, M. Ando and B. Fiedler, Failure behavior of an epoxy matrix under different kinds of static loading, Composites Science and Technology, 61 (2001) 1615–1624.
DOI: 10.1016/s0266-3538(01)00057-4
Google Scholar
[12]
B. C. Ray, Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites, Journal of Colloid and Interface Science, 298 (2006) 111–117.
DOI: 10.1016/j.jcis.2005.12.023
Google Scholar
[13]
R. Ramesh, K. Padmanabhan and R. Murugan, Investigation on static and dynamic mechanical properties of epoxy based woven fabric glass/carbon hybrid composite laminates, Procedia Engineering, 97 (2014) 459–468.
DOI: 10.1016/j.proeng.2014.12.270
Google Scholar
[14]
R. F. Gibson and I. C. Finegan, Recent research on enhancement of damping in polymer composites, Composite Structures, 44 (1999) 89-98.
DOI: 10.1016/s0263-8223(98)00073-7
Google Scholar
[15]
D. W. Radford and J. D. D. Melo, Time and temperature dependence of the viscoelastic properties of CFRP by dynamic mechanical analysis, Composite Structures, 70 (2005) 240–253.
DOI: 10.1016/j.compstruct.2004.08.025
Google Scholar
[16]
M. H. Santare, S. G. Advani and Z. Fan, Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes, Composites Part A, 39 (2008) 540–554.
DOI: 10.1016/j.compositesa.2007.11.013
Google Scholar
[17]
K. P. Menard, Dynamic Mechanical Analysis - A Practical Introduction, Florida, USA, (1999).
Google Scholar
[18]
D. K. Rathore, R. K. Prusty, S. C. Mohanty, B. P. Singh and B. C Ray, In-situ elevated temperature flexural and creep response of inter-ply glass/carbon hybrid FRP composites, Mechanics of Materials, 105 (2017) 99-111.
DOI: 10.1016/j.mechmat.2016.11.013
Google Scholar
[19]
ASTM International, ASTM standard D 3171, Standard test method for matrix digestion, USA, (1999).
Google Scholar
[20]
J.A. Quinn. Composites - Design Manual. Liverpool, L25 4SY, England, (2002).
Google Scholar
[21]
J. R. Correia, M. M. Gomes, J. M. Pires and F. A. Branco, Mechanical behaviour of pultruded glass fibre reinforced polymer composites at elevated temperature: Experiments and model assessment, Composite Structures, 98 (2013) 303-313.
DOI: 10.1016/j.compstruct.2012.10.051
Google Scholar
[22]
L. Lee, V. M. Karbhari and R. Atadero, Consideration of material variability in reliability analysis of FRP strengthened bridge decks, Composite Structures, 70 (2005) 430–443.
DOI: 10.1016/j.compstruct.2004.09.003
Google Scholar
[23]
R. E. Walpole, R. H. Myers, S. L. Myers and K. Ye, Probability and Statistics for Engineers and Scientists, 8th edition, Pearson Prentice Hall, Upper Saddle River, N. I., (2007).
Google Scholar