[1]
A.A. Plugin, A.N. Plugin, O.A. Plugin, O.V. Romanenko, O.A. Kalinin, S.V. Miroshnichenko, A.I. Babii, N.M. Partala, Reducing of energy intensity of concrete sleepers production using superplasticizers and hardening accelerators, 19 Internat. Baustofftagung, Weimar, Band 2, pp.1125-1133, (2015).
DOI: 10.15802/bttrp2021/245342
Google Scholar
[2]
F. Pruckner, O.E. Gjørv, Effect of CaCl2 and NaCl additions on concrete corrosivity, Cem. Concr. Res. 34 (2004) 1209-1217.
DOI: 10.1016/j.cemconres.2003.12.015
Google Scholar
[3]
DIN EN 206-1 Concrete - Specification, performance, production and conformity.
Google Scholar
[4]
Materials Science and Technology (a comprehensive treatment). Corrosion and Enviromental Degradation, Vol. II, M. Schutze (Ed.), Wiley-VCH ed., 2000, pp.391-436.
Google Scholar
[5]
T. Yonezawa, V. Ashworth, R.P.M. Procter, Pore Solution Composition and Chloride Effects on the Corrosion of steel in concrete, Corrsion Eng., 44(7) (1989) 489-499.
DOI: 10.5006/1.3583967
Google Scholar
[6]
V.B. Ratinov, T.I. Rozenberg, Concrete admixtures, Stroyizdat, Moscow, 1989. (In Russian).
Google Scholar
[7]
H.F.W. Taylor, Cement Chemistry, Academic Press, London, (1990).
Google Scholar
[8]
T. Matschei, B. Lothenbach, F.P. Glasser, The AFm phase in Portland cement, Cem. Concr. Res. 37(2) (2007) 118-130.
DOI: 10.1016/j.cemconres.2006.10.010
Google Scholar
[9]
M.D. Andersen, H.J. Jakobsen, J. Skibsted, Characterization of the α-β Phase Transition in Friedels Salt (Ca2Al(OH)6Cl·2H2O) by Variable-Temperature 27Al MAS NMR Spectroscopy, J. Phys. Chem. 106(28) (2002) 6676-6682.
DOI: 10.1021/jp014573p
Google Scholar
[10]
A.K. Suryavanshi, R.N. Swamy, Stability of Friedel's salt in carbonated concrete structural elements, Cem. Concr. Res. 26(5) (1996) 729-741.
DOI: 10.1016/s0008-8846(96)85010-1
Google Scholar
[11]
J.P. Rapin, E. Elkaim, M. Francois, G. Renaudin, Structual transition of Friedel's salt 3CaO·Al2O3·CaCl2·10H2O studied by synchrotron powder diffraction, Cem. Concr. Res. 32 (2002) 513-519.
DOI: 10.1016/s0008-8846(01)00716-5
Google Scholar
[12]
Z.M. Larionova, L.V. Nikitina, V.R. Garashin, Phase composition, microstructure and strength of cement matrix and concrete, Stroyizdat, Moscow, 1977. (In Russian).
Google Scholar
[13]
M. Balonis, The Influence of Inorganic Chemical Accelerators and Corrosion Inhibitors on the Mineralogy of Hydrated Portland Cement Systems, PhD Thesis, University of Aberdeen, (2010).
Google Scholar
[14]
Concise reference of physical and chemical quantities, A.A. Ravdel, A.M. Ponomariova (Eds.), Specialized literature, St. Petersburg, (1998).
Google Scholar
[15]
V.I. Babushkin, G.M. Matveyev, O.P. Mchedlov-Petrossyan, Thermodynamics of silicates, O.P. Mchedlov-Petrossyan (Ed.), Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, (1985).
DOI: 10.1007/978-3-642-69320-5
Google Scholar