Assessment of the Influence of Corrosive Aggressive Cargo Transportation on Vehicle Reliability

Article Preview

Abstract:

The analytical models for calculating the performance of vehicles used to transport fertilizers have been developed. The durability of undercarriages elements is estimated with consideration of kinetic equations for determining the periods of nucleation and propagation of cracks. The formulas for determining the durability of П-shaped thin-walled sections as the sum of the periods of nucleation and subcritical growth of corrosion-fatigue cracks in metal structures of vehicles, depending on the conditions of operation, are applied as well.

You might also be interested in these eBooks

Info:

Pages:

17-25

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Vahlensieck, B. (1998). Fatigue Analysis for Drive-lines of Agricultural Machinery. VDI BERICHTE, 1449, 345-350.

Google Scholar

[2] Popovych P. Comprehensive analysis of the reliability of tractor trailers carrier systems during their operation (Комплексний аналіз надійності несучих систем тракторних причепів при їхній експлуатації) // Popovych P., Rybak Т./ Mechanization of agricultural production. - Bulletin ХНТУСГ, Vol. 93 Kharkiv, 2010.- P. 411-414.

Google Scholar

[3] Paraforos, D., & Griepentrog, H. W. (2014). Surface Profiles Acquisition for Assessing Fatigues Life of Agricultural Machinery in Test Facilities. In 18th International ISTVS Conference (Vol. 22).

Google Scholar

[4] Eker, B., & Yuksel, E. (2005). Solutions to corrosion caused by agricultural chemicals. Trakia Journal of Sciences, 3(7), 1-6.

Google Scholar

[5] Schouten, J. C., & Gellings, P. J. (1987). Quantitative measures of corrosion and prevention: application to corrosion in agriculture. Journal of Agricultural Engineering Research, 36(3), 217-231.

DOI: 10.1016/0021-8634(87)90075-8

Google Scholar

[6] Wear and corrosion of agricultural machinery (Износ и коррозия сельскохозяйственных машин) / М.М. Severniev, N.N. Podlekarev, V.Sh. Sokhadze и др.; под ред. М.М. Severniev. – Minsk: Belarus. navuka, 2011. – 332 p.

Google Scholar

[7] McArthur, J. W., & McCord, G. C. (2017). Fertilizing growth: Agricultural inputs and their effects in economic development. Journal of development economics, 127, 133-152.

DOI: 10.1016/j.jdeveco.2017.02.007

Google Scholar

[8] Ukrayina u tsyfrakh. Statystychnyy zbirnyk. Vidpovidal'nyy za vypusk O. A. Vyshnevs'ka. Za redaktsiyeyu I. Ye. Vernera. – Kyyiv: Derzhavna sluzhba statystyky Ukrayiny, 2017. – 240 s.

Google Scholar

[9] Popovych. P. V. The service life evaluation of fertilizer spreaders undercarriages / P. V., Popovych; O. L., Lyashuk; I. S., Murovanyi; V. O., Dzyura; O. S., Shevchuk; V. D., Myndyuk // INMATEH – Agricultural Engineering . Sep-Dec 2016, Vol. 50, Issue 3, p.39.

Google Scholar

[10] Popovych. P. V. Influence of organic operation environment on corrosion properties of metal structure materials of vehicles/ Popovych P.V., Lyashuk O.L., Shevchuk O.S., Tson O.P., Bortnyk I. M., Poberezhna L.Ya.// INMATEH – Agricultural Engineering. 2017, Vol. 52, Issue 2, p.113.

DOI: 10.21496/ams.2017.007

Google Scholar

[11] Popovich P.V. Influence of Operating Media on the Fatigue Fracture of Steels for Elements of Agricultural Machines / R. A. Barna, P. V. Popovich // Materials Science . – 2014.– Vol. 50, 3. – p.377–380.

DOI: 10.1007/s11003-014-9729-0

Google Scholar

[12] Popovych. P. V. The service life evaluation of fertilizer spreaders undercarriages / P. V., Popovych; O. L., Lyashuk; I. S., Murovanyi; V. O., Dzyura; O. S., Shevchuk; V. D., Myndyuk // INMATEH – Agricultural Engineering . Sep-Dec 2016, Vol. 50, Issue 3, p.39.

Google Scholar

[13] Popovych. P. V. Influence of organic operation environment on corrosion properties of metal structure materials of vehicles/ Popovych P.V., Lyashuk O.L., Shevchuk O.S., Tson O.P., Bortnyk I. M., Poberezhna L.Ya.// INMATEH – Agricultural Engineering. 2017, Vol. 52, Issue 2, p.113.

DOI: 10.21496/ams.2017.007

Google Scholar

[14] Popovich P.V. Influence of Operating Media on the Fatigue Fracture of Steels for Elements of Agricultural Machines / R. A. Barna, P. V. Popovich // Materials Science . – 2014.– Vol. 50, 3. – p.377–380.

DOI: 10.1007/s11003-014-9729-0

Google Scholar

[15] Maruschak, P., Bishchak, R., Prentkovskis, O., Poberezhnyi, L., Danyliuk, I., & Garbinčius, G. (2016).

DOI: 10.1177/1687814016641565

Google Scholar

[16] Poberezhnyi, L. Y., Marushchak, P. O., Sorochak, A. P., Draganovska, D., Hrytsanchuk, A. V., & Mishchuk, B. V. (2017). Corrosive and Mechanical Degradation of Pipelines in Acid Soils. Strength of Materials, 49(4), 539-549.

DOI: 10.1007/s11223-017-9897-x

Google Scholar

[17] Fracture Mechanics and Strength of Materials: Guidebook (Механика разрушения и прочность материалов: Справ. Пособие) – Vol.4. (Ed.by Panasiuk V.V.) – Kyiv: Naukova Dumka, 1990. – 680p.

Google Scholar

[18] Murakami, Y. (2002). Metal fatigue: effects of small defects and nonmetallic inclusions. Elsevier.

Google Scholar

[19] Miller, K. J. (1994). Some recent advances in metal fatigue: understanding the two thresholds of fatigue behaviour. In Advances in Fracture Resistance and Structural Integrity (pp.321-331).

DOI: 10.1016/b978-0-08-042256-5.50036-6

Google Scholar

[20] Stephens, R. I., Fatemi, A., Stephens, R. R., & Fuchs, H. O. (2000). Metal fatigue in engineering. John Wiley & Sons.

Google Scholar

[21] Blednova, Z. M., Makhutov, N. A., Rusinov, P. O., & Stepanenko, M. A. (2015).

Google Scholar

[22] Troshchenko, V. T., Pokrovskiy, V. V., & Prokopenko, A. V. (1987). Treshchinostoykost' metallov pri tsiklicheskom nagruzhenii. (Трещиностойкость металлов при циклическом нагружении) K .: Nauk. dumka.

Google Scholar

[23] Anderson, T. L. (2017). Fracture mechanics: fundamentals and applications. CRC press.

Google Scholar

[24] Schijve J. Fatigue of materials and structures in the 20th century: state-of-the-art,, Materials Science. - 2003. – 39, №. 3. P 7-27.

Google Scholar

[25] Andreykiv А.Ye., Darchuk А.I. Fatigue failure and durability of structures (Усталостное разрушение и долговечность конструкций) - К.: Naukova Dumka, 1992.- 184 p.

Google Scholar

[26] Fundamentals of the theory and calculation of agricultural machines for strength and reliability (Основы теории и расчета сельскохозяйственных машин на прочность и надежность). edited by P.М. Volkov, Tenenbaum. М: Mechanical Engineering, 1977.–310 p.

Google Scholar

[27] Pysarenko G.S., Yakovliev А.P., Matveyev V.V. Handbook on the resistance of materials (Справочник по сопротивлению материалов.) – К.: Naukova Dumka, 1988. – 734 p.

Google Scholar

[28] Stallybrass M.P. A semi-infinite crack perpendicular to the surface of an elastic half-plane // Int. J. Eng. Sci. – 1971.– 9, № 1. – P. 133–150.

DOI: 10.1016/0020-7225(71)90016-4

Google Scholar

[29] Fracture mechanics and strength of materials: Gidebook. Vol.4. (Механика разрушения и прочность материалов: Справ. пос. в 4-х т. / Ed. by V.V. Panasiuk. – К.: Naukova Dumka, 1988. – V. 2: Strain intensity coefficients in the bodies with cracks / М.P. Savruk. – 620 p.

Google Scholar

[30] Ostash, O. P., Panasyuk, V. V., & Kostyk, E. M. (1999). A phenomenological model of fatigue macrocrack initiation near stress concentrators. Fatigue and Fracture of Engineering Materials and Structures, 22(2), 161.

DOI: 10.1046/j.1460-2695.1999.00098.x

Google Scholar

[31] Maruschak, P. O., Okipnyi, I. B., Poberezhnyi, L. Y., & Maruschak, E. V. (2013). Study of heat-resistant steel strain hardening by indentation. Metallurgist, 56(11-12), 946-951.

DOI: 10.1007/s11015-013-9680-6

Google Scholar