[1]
Pat.112585 Ukraine F04 B43/12 (2006.01), F04 B15/02 (2006.01) Universal hose-type concrete pump / Emeljanova A.I., Zadorozhniy A.O., Klimenko M.V., Chayka D.O., Kharkiv National University of Construction and Architecture.
Google Scholar
[2]
Józsefklespitz, leventekovács. Peristaltic pumps – a review on working and control possibilities/ SAMI 2014, IEEE 12th international symposium on applied machine intelligence and informatics, January 23-25, 2014, Herl'any, Slovakia, pages 191-194.
DOI: 10.1109/sami.2014.6822404
Google Scholar
[3]
P. Dhananchezhiyan, Somashekhar S., Hiremath. Optimization of multiple micro pumps to maximize the flow rate and minimize the flow pulsation / 1st global colloquium on recent advancements and effectual researches in engineering, science and technology – raerest 2016 on April 22nd & 23rd 2016, Volume 25, pages 1226-1233.
DOI: 10.1016/j.protcy.2016.08.212
Google Scholar
[4]
Dimitri Feys, Kamal H., Khayat, Rami Khatib. How do concrete rheology, tribology, flow rate and pipe radius influence pumping pressure? / Cement and Concrete Composites, Volume 66, February 2016, pages 38–46.
DOI: 10.1016/j.cemconcomp.2015.11.002
Google Scholar
[5]
M.S. AboDhaheer. Simulation of self-compacting concrete flow in the J-ring test using smoothed particle hydrodynamics (SPH) / M.S. AboDhaheer, S. Kulasegaram, B.L. Karihaloo – Cement and Concrete Research. – Vol. 100. – November 2016. – pages 27-34.
DOI: 10.1016/j.cemconres.2016.07.016
Google Scholar
[6]
Guodong Cao. Numerical flow simulation of fresh concrete with viscous granular material model and smoothed particle hydrodynamics / Guodong Cao, Zhuguo Li. – Cement and Concrete Research. – Vol. 100. – October 2017. – pages 263-274.
DOI: 10.1016/j.cemconres.2023.107114
Google Scholar
[7]
Daszczenko, A. Hydraulika: Maszyny hydraulicznu [Text] / A. Daszczenko, J. Glinski, E. Krasowski et al. – Lublin: Polska Akademia Nauk Oddzial w Lublinie, 2010. – 385 р.
Google Scholar
[8]
Grekhov L.V. Fuel equipment and control systems for diesel engines / Grekhov L.V., Ivaschenko N.A., Markov V.A. // College textbook. – М.: Legion-Avtodata, 2004. – 344 p., il.
Google Scholar
[9]
Prisnyakov V.F. Dynamics of liquid rocket propulsion systems. – М.: Machine Building, 1983. – 248 p.
Google Scholar
[10]
Chayka D.O. Investigation of the working conditions of a new general-service hydraulic flexible-hose pump considering its dynamic characteristics / Scientific Bulletin for Construction. – 2017. – No. 3 (89). – pages 230-234. – ISSN 2311-7257.
Google Scholar
[11]
Bashta T.M. Hydraulic drive and hydropneumoautomatics. – М.: Machine Building, – 1972. – 320 р.
Google Scholar
[12]
Modulus of elasticity // Great Soviet Encyclopedia (in 30 volumes) / A.M. Prokhorov (chief editor). – 3rd edition – М.: Soviet Encyclopedia, 1974. – Т. XVI. – page 406. – 616 р.
Google Scholar
[13]
Loitsyansky L.G. Fluid mechanics. – М.: Science, 1978. – 736 р.
Google Scholar
[14]
Neville A. M. Properties of concrete. – London: Longman, 1995. – Т. 4. – 344 р.
Google Scholar
[15]
Gamynin N.S. Hydraulic drive of control systems / N.S. Gamynin. – М.: Machine Building, 1972. – 376 р.
Google Scholar
[16]
Fundamentals of one-dimensional unsteady gas dynamics / G.A. Atanov. – Kyiv: High school, 1979. – 183 р.
Google Scholar
[17]
R. Courant, K. Friedrichs, H. Lewy – Über die partiellen Differenzengleichungen der mathematischen Physik // Mathematische Annalen. – 1928. – Т. 100, No. 1. – pages 32-74.
DOI: 10.1007/bf01448839
Google Scholar