Estimation of Steering Wheel Angle and Vehicle Lateral State from Measured Lateral Forces

Article Preview

Abstract:

This paper introduces a method to estimate the lateral dynamics parameters,which are valuable to the development of more complex and powerful driver assistance system. In the assumption of measured lateral forces, three state observer methods are designed to simultaneously estimate the steering angleas unknown input and vehicle lateral state variables. The stability conditionsof such observers are derived in terms of Linear Matrix Inequalities (LMI). Simulation results through Matlab/Simulink software based on data of the CALLAS vehicle simulator is used to evaluate the performance of observersbased on Unknown Input Observer (OEI).

You might also be interested in these eBooks

Info:

Pages:

14-31

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Armand, Situation understanding and risk assessment framework for preventivedriver assistance, Ph.D. thesis, Paris-Saclay University, (2016).

Google Scholar

[2] H.Zhang, J.Wang, Vehicle lateral dynamics control through afs/dyc and robust gain-scheduling approach, IEEE Trans. Veh.Technol. 65 (1):489-494, (2016).

DOI: 10.1109/tvt.2015.2391184

Google Scholar

[3] H.Grip, L.Imsland, T.A. Johansen, J.C. Kalkkuhl, A.Suissa, Vehicle sideslip estimation: design, implementation, and experimental validation, IEEE Contr. Syst. Mag. 29 (05): 36-52, (2009).

Google Scholar

[4] H.Du, N.Zhang, F.Naghdy,Velocity-dependent robust control for improving vehicle lateral dynamics, Transportation Research Part C: Emerging Technologies, 19(3):454-468, (2011).

DOI: 10.1016/j.trc.2010.05.004

Google Scholar

[5] G.Jia, L.Li, D.Cao, Model-based estimation for vehicle dynamics states at the limit handling, IEEE Contr. Syst. Mag 137(10):1-8, (2015).

Google Scholar

[6] A.Dadashnialehi, A.Bab-Hadiashar, Z.Cao, A.Kapoor, Intelligent sensorless antilock braking system for brushless in-wheel electric vehicles,IEEE Trans. Ind. Electron 62 (03):1629-1638, (2015).

DOI: 10.1109/tie.2014.2341601

Google Scholar

[7] G. Baffet, A. Charara, D. Lechner, Estimation of vehicle sideslip, tire force and wheel cornering stifness, Control Engineering Practice 17(11):1255-1264, (2009).

DOI: 10.1016/j.conengprac.2009.05.005

Google Scholar

[8] M. Gobbi, P. andGuarneri, G. Mastinu, G. Rocca, A smart wheel for improving the active safety of road vehicles, in: AVEC, International symposium on Advanced Vehicle Control, Loughborough, UK, (2010).

DOI: 10.1115/detc2010-29059

Google Scholar

[9] D. Kwapisz, J. Stphant, D. Meizel, Instrumented bearing for force and moment measurements, in: IEEE Sensors - Lecce , Italy, 26-29 Oct.:1480-1483,(2008).

DOI: 10.1109/icsens.2008.4716725

Google Scholar

[10] H. Mol, Method and sensor arrangement for load measurement on rolling element bearing based on model deformation, uS Patent 7,389,701(Jun. 24 2008).

Google Scholar

[11] D.Dorrell, A.Vinel, D.Cao, Connected vehicles-advancements in vehicular technologies and informatics, IEEE Trans. Ind. Electron. 62 (12): 7824-7826, (2015).

DOI: 10.1109/tie.2015.2483490

Google Scholar

[12] A. Stotsky, I. Kolmanovsky, Simple unknown input estimation techniques for automotive applications, American Control Conference: 3312-3317, (2001).

DOI: 10.1109/acc.2001.946139

Google Scholar

[13] F. E. Saber, M. Ouahi, A. Saka, Vehicle dynamics and steering angle estimation using a virtual sensor, in: Confrence Internationale de concption et de production intgre, CPI15, Tangier, Morocco, (2015).

Google Scholar

[14] M. Ouahi, A. Rabhi, A. Elhajjaji, Tire force and wheel torque estimation using high gain observer, in: The first international conference on intelligent systems and computer vision, ICSC15, Fez, Morocco, (2015).

DOI: 10.1109/icosc.2015.7152788

Google Scholar

[15] E. J.Yang, M.Zhou, Front sensor and gps-based lateral control of automated vehicles IEEE Trans. Intell. Transp. Syst. 14 (1):146-154,(2013).

DOI: 10.1109/tits.2012.2207894

Google Scholar

[16] X.Huang, J.Wang, Identification of ground vehicle steering system backlash J. Dyn. Syst., Meas., Control 135 (01): 1-8,(2012).

Google Scholar

[17] Z.Gao, C.Cecati, S.X. Ding, A survey of fault diagnosis and fault-tolerant techniques,part i: Fault diagnosis with model-based and signal-based approaches, IEEE Trans. Ind. Electron. 62(06): 3757-3767,(2015).

DOI: 10.1109/tie.2015.2417501

Google Scholar

[18] M. Segel, Theorical prediction and experimental substantiation of the response of the automobile to steering control, in: Proc. automobile division of the institut of mechanical engineers, (7): 310- 330,(1956).

DOI: 10.1243/pime_auto_1956_000_032_02

Google Scholar

[19] S. Solmaz, M. Akar, R. Shorten, J. Kalkkuhl, real-time multiple-model estimation of center of gravity position in automotive vehicles, Vehicle system dynamics 46(9):763-788,(2008).

DOI: 10.1080/00423110701602670

Google Scholar

[20] R. Marino, S. Scalzi, asymptotic sideslip angle and yaw rate decoupling control in four-wheel steering vehicles, Vehicle system dynamics 48(9): 999-1019, (2010).

DOI: 10.1080/00423110903248686

Google Scholar

[21] M. Boutayeb, M. Darouach, H. Rafaralahy, Generalized state-space observers for chaotic synchronization and secure communication, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49(3): 345-349, (2002).

DOI: 10.1109/81.989169

Google Scholar