The Effect of Substituting Metakaolin for Sand on the Thermomechanical Behaviour of Reactive Powder Concrete (RPC)

Article Preview

Abstract:

The weakening of the behavior of reactive powder concrete (RPC) under high temperature is a major drawback; therefore, it is necessary to find an ingredient that improves their resistance under rising temperatures. The present work involves the use of metakaolin as a substitute for sand in a reactive powder concrete (RPC) in order to assess its effect on the mechanical strength at high temperatures. The test specimens are preheated up to 100°, 300°, 500°, 700° and 900°C, respectively following a well-defined cycle, thereafter subjected to a three-point bending followed by compression tests. Samples of the tested specimens were used for thermal, mineralogical and microstructural analyses using the thermogravimetric and differential thermal analysis (TG / DTA), the X-ray diffraction (XRD) and the scanning electron microscopic Analysis (SEM).The heating tests revealed that all the specimens exploded before reaching 500°C. However, they can withstand 300°C before exploding for different exposure durations depending on the metakaolin substitution ratio. Therefore, the mechanical tests were applied only on unheated specimens and those heated up to 100°C. The results showed that the use of metakaolin improves the mechanical strength of the RPC, both at room temperature (25°C±1°C) and at 100°C. This result is confirmed by the microstructure analysis, which revealed the absence of portlandite. The latter did react with the metakaolin silica to form new calcium silicate hydrates (CSH) enhancing the mechanical strength.

You might also be interested in these eBooks

Info:

Pages:

115-130

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Tafraoui, G Escadeillas, S Lebaili, T. Vidal, Metakaolin in the formulation of UHPC. Construction and Building Materials 23 (2009), p.669 – 674.

DOI: 10.1016/j.conbuildmat.2008.02.018

Google Scholar

[2] P. Mikhailenko, F. Cassagnabere, A. Emam, M. Lachemi, Influence of physico-chemical characteristics on the carbonatation of cement past at high replacement rates of metakaolin, Construction and building materials (2017).

DOI: 10.1016/j.conbuildmat.2017.10.021

Google Scholar

[3] B.B. Sabir, S. Wild, J. Bai, Metakaolin and calcined clays as pozzolans for concrete. Cement and Concrete Research, Vol. 23 (2001) p.441.

DOI: 10.1016/s0958-9465(00)00092-5

Google Scholar

[4] P.Rougeau, B. Borys, Réaliser des produits en béton à très hautes performances ou fibres à ultra hautes performances avec des ultrafines autres que les fumées de silice, Document CERIB, Réf.DDP 114 (2004).

Google Scholar

[5] J.M. Khatib, B.B. Sabir, S. Wild, Some properties of metakaolin paste and mortar Concrete for environment enhancement and Protection, Ed. R.K. Dhir and T.D. Dyer, Sponpress, London (1996).

Google Scholar

[6] C.S. Poon, I. Lam, S.C. Kou, Y.L. Wong, R. Wong, Rate of pozzolanic reaction of metakaolin in high-performance cement pastes, Cement and Concrete Research, Vol. 31 (2001), pp.1301-1306.

DOI: 10.1016/s0008-8846(01)00581-6

Google Scholar

[7] S. Wild, J.M. Khatib, A. Jones, Relative strenght, pouzzolanic activity and cement hydration in superplasticized metakaolin concrete, Cement and concrete ressearch, Vol 26 (1996), pp.1537-1544.

DOI: 10.1016/0008-8846(96)00148-2

Google Scholar

[8] K. Salhi., B. Mezghiche, Evaluation of the mechanical properties and durability of cement mortar containing Algerian metakaolin, Ceramics Silikàty, 61 (1) (2017), 65-73.

DOI: 10.13168/cs.2016.0062

Google Scholar

[9] R. San Nicolas, Approche performantielle des bétons avec metakaolin obtenus par calcination flash, Thèse de Doctorat, Université de Toulouse, (2011).

Google Scholar

[10] S. Djaknoun, E. Ouedraogo, A. Ahmedbenyahia, Characterisation of the behavior of high performance mortars subjected to high temperature, Construction and Building Materials 28 (2012), p.176–186.

DOI: 10.1016/j.conbuildmat.2011.07.063

Google Scholar

[11] V. Nguyen. Comportement des bétons ordinaires et à hautes performances soumis à hautes températures, application à des éprouvettes de grandes dimensions, Thèse de Doctorat, Université de Cergy Pontoise (2013).

Google Scholar

[12] I. Hager, Behavior of cement concrete at high temperature, Bulletin of polish academy of sciences technical sciences, Vol 61, N° 1 (2013).

DOI: 10.2478/bpasts-2013-0013

Google Scholar

[13] M. Saridemir, H. Serereau, M. Çifliki, S. Çelikten, Microstructural analyses of high strength concretes containing metakaolin at high temperature, International journal of civil engineering, 15 (2017), 273-285.

DOI: 10.1007/s40999-016-0081-7

Google Scholar

[14] K. Varun Teja, T. Meena, A. Narender Reddy, Investigation on metakaolin and silice fume incorporated concrete under elevated temperature, IJCMS, volume 7,issue I (2018).

Google Scholar

[15] C. Bich, Contribution à l'étude l'activation thermique du kaolin, évolution de la structure cristallographique de l'activité pouzzolanique, Thèse de Doctorat, Institut national des sciences appliquées de lyon (2005).

Google Scholar

[16] M. Septfons, T. Risson, S. Maximilien, Composition de béton a poudres réactives et préparation d'une pièce à partir de celle-ci, Fascicule de brevet Européen, Date de publication et mention de la délivrance du brevet 15.08.2012, Bulletin (2012).

DOI: 10.1515/9783110805680-006

Google Scholar

[17] J. Dugat, N. Roux, G. Bernier, Etude expérimentale de la déformation sous contraintes et du comportement contrainte de rupture du BPR, Annales de l'institut technique du bâtiment et travaux publics N°532/série Béton 320 (1995), p.112 à 121.

DOI: 10.3166/rfgc.6.709-722

Google Scholar

[18] G. Batis, P. Pantazoupoulou, S. Tsilivis, E. Badogiannis, The effect of metakaolin on the corrosion behaviour of cement mortars, Cement and concrete composites, Vol.27 (2005), pp.125-130.

DOI: 10.1016/j.cemconcomp.2004.02.041

Google Scholar

[19] G. Baker, The effect of exposure to elevate temperature on the fracture energy of plain concrete. Materials and structures, Vol 29 (1999), pp.383-388.

Google Scholar

[20] A.Menou, Etude du comportement thermos-mécanique des bétons à haute température, Thèse doctorat de Pau et des pays de l'ADOUR (2004).

Google Scholar

[21] N.A. Noumowé, Effet de hautes températures (20°C-600°C) sur le béton. Cas particulier du BHP, Thèse de Doctorat de l'INSA de Lyon (1995).

Google Scholar

[22] A. Hillerborg, The theoretical basis of a method to determine the fracture energy Gf of concrete. Matériaux et constructions, Vol 18-N°106 (1985), pp.291-296.

Google Scholar

[23] RILEM (Draft recommendation), Determine of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Materials and structures 18 (106) (1985), 285-290.

DOI: 10.1007/bf02498757

Google Scholar

[24] M. Elices, G V. Guinea, J. Plames, On the measurement of concrete fracture energy using three-point bend tests, Materials and structures, Vol 30 (1997), pp.375-376.

DOI: 10.1007/bf02480689

Google Scholar

[25] M. Castellote, C. Alonso, C. Andrade, X. Turillas, J. Campo, Composition and microstructural. changes of cement pastes upon heating, as studied by neutron diffraction, Cement and Concrete Research, 34(9) (2004), 1633–1644.

DOI: 10.1016/s0008-8846(03)00229-1

Google Scholar

[26] L. Divet, Présentation des techniques de diagnostic de l'état d'un béton soumis à un incendie. Techniques et méthodes des Laboratoires des Ponts et Chaussées (2005).

DOI: 10.4000/histoire-cnrs.435

Google Scholar

[27] M. Moisson, Contribution à la maitrise alcali-silice par ajout de fines granulats réactifs dans le béton, Thèse Doctorat, INSA Toulouse (2005).

Google Scholar