Environmental Impact on Biodegradation Speed and Biodegradability of Polyethylene and Ipomoea Batatas Starch Blend

Article Preview

Abstract:

All over the world, even in developing countries, plastics have quickly become one of the most common things found around. Unsurprisingly, this has caused a major waste management problem, particularly because synthetic polymers do not break down and degrade like organic waste. As a result, an alternative is being sought out in biopolymers. This study explores the suitability of a biopolymer blend; Ipomoea batatas mixed with low density polyethylene (LDPE) at various compositions. Biodegradation of this biopolymer blend was observed periodically when produced samples of Ipomoea batatas/LDPE were buried in loamy sand over a period of 28 days. Results show that produced biopolymers are environmentally compatible and bio-degradable. It was also observed that the sample blend with equal portions by weight of Ipomoea batatas (50%) and LDPE (50%) showed the most optimum pattern of degradation. There was steady degradation over the study period and the rate of degradation observed showed sustainability.

You might also be interested in these eBooks

Info:

Pages:

145-154

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Susmita D.S., Anshuman S., Shivani G.V. and Meenakshi G., (2014) Preparation of Starch-Poly Vinyl Alcohol (PVA) Blend Using Potato and Study of Its Mechanical Properties. International Journal of Pharmaceutical Science Invention, 3(3):33-37.

Google Scholar

[2] Watcharakul S., Umsakul K., Hodgson B., Tanrattanakul V. and Chumeka W. (2012) Biodegradation of a blended starch/natural rubber foam biopolymer and rubber gloves by Streptomyces coelicolor CH13. Electronic Journal of Biotechnology. 15(1) http://dx.doi.org/10.2225/vol15-issue1fulltext-10.

DOI: 10.2225/vol15-issue1-fulltext-10

Google Scholar

[3] Hoornweg D. and Bhada-Tata P. (2012). What a Waste: A Global Review of Solid Waste Management. Urban development series; knowledge papers no. 15. World Bank, Washington, DC. https://openknowledge.worldbank.org/handle/10986/17388.

Google Scholar

[4] D'Alessandro, N. (2014). 22 Facts about Plastic Pollution. Retrieved March 24, 2018, from https://www.ecowatch.com/22-facts-about-plastic-pollution-and-10-things-we-can-do-about-it-1881885971.html.

Google Scholar

[5] Halden R.U. (2010). Plastics and health risks. Annual Review of Public Health. 31(1):179–194. [PubMed:20070188].

DOI: 10.1146/annurev.publhealth.012809.103714

Google Scholar

[6] Borghei M., Karbassi A.R., Khoramnejadian S., Oromiehie A. & Javid A.H. (2010), Microbial biodegradable potato starch based low density polyethylene, African Journal of Biotechnology, 9(26):4075-4080.

Google Scholar

[7] Gichuki S.T., Carey E., Mwanga R., Kapinga R., Ndolo P.J. and Kamau J.W. (1998), Evaluation of Sweetpotato Seeding Progenies in Kenya, Uganda and Tanzania. In: Root Crops and Poverty Alleviation, Akoroda, M.O. and I.J. Ekanayake (Eds.). International Institute of Tropical Agriculture, Ibadan, Nigeria, pp: 461-465.

Google Scholar

[8] Oyebisi S. O., Olutoge, F. A., Ofuyatan, O. O., Abioye, A. A. (2017). Effect of corncob ash blended cement on the properties of lateritic interlocking blocks. Progress in Industrial Ecology – An International Journal, 11 (4), 373-387.

DOI: 10.1504/pie.2017.092729

Google Scholar

[9] Ajayi, O. O., Omowa, O. F., Abioye, O. P., Omotosho, O. A., Akinlabi, E. T., Akinlabi, S. A., Abioye, A. A., Owoeye, F. T., and Afolalu, S. A. (2018). Experimental Investigation of the Effect of ZnO-Citrus sinensis Nano-additive on the Electrokinetic Deposition of Zinc on Mild Steel in Acid Chloride. The Minerals, Metals & Materials Society, TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings, The Minerals, Metals & Materials Series.35-40.

DOI: 10.1007/978-3-319-72526-0_4

Google Scholar

[10] Mwanja Y.P., Goler E.E. and Gugu F.M. (2017). Assessment of root and vine yields of sweet potato (Ipomoea batatas (L.) Lam) landraces as influenced by plant population density in Jos-Plateau, Nigeria. International Journal of Agricultural Research, 12: 88-92.

DOI: 10.3923/ijar.2017.88.92

Google Scholar

[11] Ikada Y. & Tsuji H., (2000), Biodegradable polyesters for medical and ecological applications, Macromolecular Rapid Communications, 21(3):117-132.

DOI: 10.1002/(sici)1521-3927(20000201)21:3<117::aid-marc117>3.0.co;2-x

Google Scholar

[12] Rutkowska M., Heimowska A., Krasowska K. and Janik H. (2002). Biodegradability of Polyethylene Starch Blends in Sea Water. Polish Journal of Environmental Studies. 11(3):267-274.

Google Scholar

[13] Cho, H. S., Moon, H. S., Kim, M., Nam, K., & Kim, J. Y. (2011). Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly (butylene succinate) biodegradable polymer under aerobic and anaerobic environment. Waste Management, 31(3), 475–480. https://doi.org/10.1016/j.wasman.2010.10.029.

DOI: 10.1016/j.wasman.2010.10.029

Google Scholar

[14] Mostafa N.A., Awatef A.F., Hala M.A. and Aghareed M.T. (2018), Production of Biodegradable Plastic from Agricultural Wastes, Arabian Journal of Chemistry. (11):546-553.

DOI: 10.1016/j.arabjc.2015.04.008

Google Scholar

[15] Makhtar, N. S. M., Rais, M. F. M., Rodhi, M. N. M., Bujang, N., Musa, M., & Hamid, K. H. K. (2013). Tacca leontopetaloides starch: New sources starch for biodegradable plastic. Procedia Engineering, 68, 385–391. doi.org/10.1016/j.proeng.2013.12.196.

DOI: 10.1016/j.proeng.2013.12.196

Google Scholar

[16] European Parliament and Council. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH).

DOI: 10.1016/j.fos.2016.03.026

Google Scholar

[17] Chinaglia S., Tosin M. & Degli-Innocenti F. (2018). Biodegradation rate of biodegradable plastics at molecular level. Polymer Degradation and Stability, 147:237-244. https://doi.org/10.1016/j.polymdegradstab.2017.12.011.

DOI: 10.1016/j.polymdegradstab.2017.12.011

Google Scholar

[18] Leonel M (2007). Analysis of the shape and size of starch grains from different botanical species. Ciênc. Tecnol. Aliment., 27(3): 579-588.

Google Scholar

[19] Ladeira T., Souza H., Pena R. (2013). Characterization of the roots and starches of three cassava cultivars. International Journal of Agricultural Science Research, Vol. 2(1), pp.012-020.

Google Scholar

[20] Mostafa, N.A., Awatef, A.F., Hala, M.A., Aghareed, M.T., 2018. Production of Biodegradable Plastic from Agricultural Wastes, Arabian Journal of Chemistry, Volume 11, pp.546-553.

DOI: 10.1016/j.arabjc.2015.04.008

Google Scholar

[21] Fakinle, B. S., Odekanle, E. L., Olalekan, A. P., Odunlami, O. A., Sonibare, J. A., 2016. Impacts of polycyclic aromatic hydrocardons from vehicular activities on the ambient air quality of Lagos mega city. Environ Qual Manage., Wiley Periodicals, Inc 2018; Volume 27, pp.73-78.

DOI: 10.1002/tqem.21563

Google Scholar

[22] Dong, A.J., Zhang, J.W., Jiang, K., Deng, L.D., 2008. Characterization and in vitro Degradation of Poly (octadecanoic anhydride), Journal of Material Science. Volume 19, pp.39-46.

Google Scholar

[23] Yang, J., Webb, A.R., Pickerill, S.J., Hageman G., Ameer, G.A., 2006. Synthesis and Evaluation of Poly (diol citrate) Biodegradable Elastomers. Biomaterials, Volume 27, pp.1889-1898.

DOI: 10.1016/j.biomaterials.2005.05.106

Google Scholar