Multi-Objective Optimization of Friction Stir Spot Welds of Aluminum Alloy Using Entropy Measurement

Article Preview

Abstract:

Surface finish accrued extra-production cost, reduced effective sheet thickness, stir zone galling, undesirable flash-root stress concentration and fatigue cracks are consequences of bulk expulsion of flash during friction stir spot welding of aluminum alloys. This paper attempts to cutback the abovementioned challenges and improves the weld strength (shear failure load) of friction stir spot welded joints of an Al alloy by adopting an integrated Grey relational analysis-entropy measurement method as a multi-objective optimization tool. Shear failure load, and expelled flash properties (pushed out length and thickness) are the three examined quality characteristics of the joint while tool rotational speed (600-1400 rpm), dwell time (3-6 s) and plunge depth (1.5-1.7 mm) are the studied process parameters. The experiment was planned via the use of Taguchi method whereas the entropy measurement method facilitated the identification of the precise weighting values required for the estimation of the unified grey relational grade. The failure load of the joint was maximized while both flash height and pushed-out length were minimized. The optimized shear failure load and flash properties were attained at a parameter setting of 1400 rpm rotational speed, 6 s dwell time and 1.5 mm plunge depth. The tool rotational speed was found to have the most significant effect and percentage contribution on the combined responses with 67.75%, followed by plunge depth (12.88 %) and dwell time (11.94 %) respectively. The validation results confirm the robustness of the entropy measurement-based multi-objective optimization as a tool for improving the quality responses of friction stir spot welds.

You might also be interested in these eBooks

Info:

Pages:

28-41

Citation:

Online since:

November 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Boukraa, N. Lebaal, A. Mataoui, A. Settar, M. Aissani, N. Tala-Ighil, Friction stir welding process improvement through coupling an optimization procedure and three-dimensional transient heat transfer numerical analysis, Journal of Manufacturing Processes 34 (2018) 566-578.

DOI: 10.1016/j.jmapro.2018.07.002

Google Scholar

[2] J. M. Piccini, H. G. Svoboda, Tool geometry optimization in friction stir spot welding of All-steel Joints, Journal of Manufacturing Processes 26 (2017) 142–154.

DOI: 10.1016/j.jmapro.2017.02.004

Google Scholar

[3] Q. Chu, W.Y. Li, X.W. Yang, J.J. Shen, A. Vairis, W.Y. Feng, W.B. Wang, Microstructure and mechanical optimization of probeless friction stir spot welded joint of an Al-Li alloy, Journal of Materials Science & Technology 34 (2018) 1739-1746.

DOI: 10.1016/j.jmst.2018.03.009

Google Scholar

[4] B. Ravi Sankar, P. Umamaheswarrao, Modelling and Optimisation of Friction Stir Welding on AA6061 Alloy, Materials Today: Proceedings 4 (2017) 7448-7456.

DOI: 10.1016/j.matpr.2017.07.076

Google Scholar

[5] M.V.R. Durga Prasad, Kiran Kumar Namala, Process Parameters Optimization in Friction Stir Welding by ANOVA, Materials Today: Proceedings 5 (2018) 4824-4831.

DOI: 10.1016/j.matpr.2017.12.057

Google Scholar

[6] O. O. Ojo, E. Taban, E. Kaluc, Friction stir spot welding of aluminum alloys: a recent review, Materials Testing, 2015, 57 (7-8), 609-627.

DOI: 10.3139/120.110752

Google Scholar

[7] D. Bakavos, Y. Chen, L. Babout, P. Prangnell, Material Interactions in a Novel Pinless Tool Approach to Friction Stir Spot Welding Thin Aluminum Sheet, Metallurgical and Materials Transactions A, 42A (2011), 1266-1281.

DOI: 10.1007/s11661-010-0514-x

Google Scholar

[8] P. Kah, R. Rajan, J. Martikainen, R. Suoranta, Investigation of weld defects in friction-stir welding and fusion welding of aluminum alloys, International Journal of Mechanical and Materials Engineering 10 (2015), 26 DOI 10.1186/s40712-015-0053-8.

DOI: 10.1186/s40712-015-0053-8

Google Scholar

[9] V. Ebrahimzadeh, M. Paidar, M. A. Safarkhanian, O. Oladimeji Ojo, Orbital friction stir lap welding of AA5456-H321/AA5456-O aluminum alloys under varied parameters, The International Journal of Advanced Manufacturing Technology, 2018, DOI 10.1007/s00170-018-1679-5.

DOI: 10.1007/s00170-018-1679-5

Google Scholar

[10] Q. Yang, S. Mironov, Y.S. Sato, K. Okamoto, Material flow during friction stir spot welding, Materials Science and Engineering A, 527 (2010), 4389-4398.

DOI: 10.1016/j.msea.2010.03.082

Google Scholar

[11] R. Fonda, A. Reynolds, C.R. Feng, K. Kniplin. G D. Rowenhorst, Material Flow in Friction Stir Welds, Metallurgical and materials transactions A, 44A (2013), 337-344.

DOI: 10.1007/s11661-012-1460-6

Google Scholar

[12] Y.-C. Lin, J.-J. Liu, J.-N. Chen, Material Flow Tracking for Various Tool Geometries During the Friction Stir Spot Welding Process, Journal of Materials Engineering and Performance, 22 (2013), 3674-3683.

DOI: 10.1007/s11665-013-0680-2

Google Scholar

[13] Q. Chu, X.W. Yang, W.Y. Li, Y. Zhang, T. Lu, A. Vairis, W.B. Wang, On visualizing material flow and precipitate evolution during probeless friction stir spot welding of an Al-Li alloy, Materials Characterization, 144 (2018), 336-344.

DOI: 10.1016/j.matchar.2018.07.026

Google Scholar

[14] O. O. Ojo, E. Taban, E. Kaluc, Effect of residual Alclad on friction stir spot welds of AA2219 alloys, Materials Testing, 60 (2018), 979-988.

DOI: 10.3139/120.111245

Google Scholar

[15] K.W. Zeng, Z.-M. Su, S.M. Luo, P.-C. Lin, M.T. Dong, T. Tang, B. Huang, Removing approach for flashes of friction stir spot welds, Journal of Materials Processing Technology, 213 (2013) 1725– 1733.

DOI: 10.1016/j.jmatprotec.2013.03.019

Google Scholar

[16] F. Hasan, J. Iqbal, F. Ahmed, Stress corrosion failure of high-pressure gas pipeline. Engineering Failure Analysis 14 (2007), 801–809.

DOI: 10.1016/j.engfailanal.2006.11.002

Google Scholar

[17] S. Kainuma, H. Katsuki, I. Iwai, M. Kumagai, Evaluation of fatigue strength of friction stir butt-welded aluminum alloy joints inclined to applied cyclic stress, International Journal of Fatigue 30 (2008), 870–876.

DOI: 10.1016/j.ijfatigue.2007.06.007

Google Scholar

[18] S. Sudhagar, M. Sakthivel, P.J. Mathew, S. Ajith Arul Daniel, A Multi-Criteria Decision Making approach for process improvement in Friction Stir Welding of Aluminium Alloy, Measurement, 108 (2017), 1-8.

DOI: 10.1016/j.measurement.2017.05.023

Google Scholar

[19] S. Shanavas, J. Edwin Raja Dhas, Parametric optimization of friction stir welding parameters of marine grade aluminum alloy using response surface methodology, Trans. Nonferrous Met. Soc. China, 27 (2017) 2334−2344.

DOI: 10.1016/s1003-6326(17)60259-0

Google Scholar

[20] A. Kumar, M K Khurana, G. Singh, Modeling and Optimization of Friction Stir Welding Process Parameters for Dissimilar Aluminium Alloys, Materials Today: Proceedings 5 (2018) 25440–25449.

DOI: 10.1016/j.matpr.2018.10.349

Google Scholar

[21] N. Arun Babu, B.Balu naik, B.Ravi, G.Rajkumar, Process Parameter optimization For Producing AA7075/WC composites by Friction stir welding, Materials Today: Proceedings 5 (2018) 18992–18999.

DOI: 10.1016/j.matpr.2018.06.250

Google Scholar

[22] R. K. Kesharwani, S. K. Panda, S. K. Pal, Multi-Objective Optimization of Friction Stir Welding Parameters for Joining of Two Dissimilar Thin Aluminum Sheets, Procedia Materials Science, 6 (2014) 178 – 187.

DOI: 10.1016/j.mspro.2014.07.022

Google Scholar

[23] A.K. Pattanaik, S. Pradhan, S.N. Panda, D.K. Bagal, K. Pal, D. Patnaik, Effect of Process Parameters on Friction Stir Spot Welding Using Grey Based Taguchi Methodology, Materials Today: Proceedings, 5 (2018) 12098–12102.

DOI: 10.1016/j.matpr.2018.02.186

Google Scholar

[24] B. Magamai Radj, T. Senthivelan, Analysis of mechanical properties on friction stir welded magnesium alloy by applying Taguchi Grey based approach, Materials Today: Proceedings, 5 (2018) 8025–8032.

DOI: 10.1016/j.matpr.2017.11.487

Google Scholar

[25] P. K. Sahu, S. Pal, Multi-response optimization of process parameters in friction stir welded AM20 magnesium alloy by Taguchi grey relational analysis, Journal of Magnesium and Alloys, 3 (2015) 36-46.

DOI: 10.1016/j.jma.2014.12.002

Google Scholar

[26] O. O. Ojo, E. Taban, Hybrid multi-response optimization of friction stir spot welds: failure load, effective bonded size, and flash volume as responses, Sådhanå 43 (2018), 1-13.

DOI: 10.1007/s12046-018-0882-2

Google Scholar

[27] P. K. Farayibi, Multi-Objective Optimisation of Laser Deposition of Metal Matrix Composites for Surface Coating Using Principal Component Analysis, International Journal of Engineering Research in Africa, 40 (2018), 9-21.

DOI: 10.4028/www.scientific.net/jera.40.9

Google Scholar

[28] K. N. Wakchaure, A. G. Thakur, Vijay Gadakh, A. Kumar, Multi-Objective Optimization of Friction Stir Welding of Aluminium Alloy 6082-T6 Using hybrid Taguchi-Grey Relation Analysis- ANN Method, Materials Today: Proceedings, 5 (2018) 7150–7159.

DOI: 10.1016/j.matpr.2017.11.380

Google Scholar

[29] M. Akbari, M. H. Shojaeefard, P. Asadi, A. Khalkhali, Hybrid multi-objective optimization of microstructural and mechanical properties of B4C/A356 composites fabricated by FSP using TOPSIS and modified NSGA-II, Trans. Nonferrous Met. Soc. China, 27(2017) 2317−2333.

DOI: 10.1016/s1003-6326(17)60258-9

Google Scholar

[30] P. Periyasamy, B. Mohan, V. Balasubramanian, S. Rajakumar, S. Venugopal, Multi-objective optimization of friction stir welding parameters using desirability approach to join Al/SiCp metal matrix composites, Trans. Nonferrous Met. Soc. China, 23(2013) 942-955.

DOI: 10.1016/s1003-6326(13)62551-0

Google Scholar

[31] M Gomathisankar, M Gangatharan, P Pitchipoo, A Novel Optimization of Friction Stir Welding Process Parameters on Aluminum Alloy 6061-T6, Materials Today: Proceedings, 5 (2018) 14397–14404.

DOI: 10.1016/j.matpr.2018.03.025

Google Scholar

[32] A Heidarzadeh, RV Barenji, V Khalili, G Güleryüz, Optimizing the friction stir welding of the α/β brass plates to obtain the highest strength and elongation, Vacuum, 159 (2018), 152-160.

DOI: 10.1016/j.vacuum.2018.10.036

Google Scholar

[33] K. Jangra, S. Grover, A. Aggarwal, Optimization of multi machining characteristics in WEDM of WC-5.3%Co composite using integrated approach of Taguchi, GRA and entropy method, Front. Mech. Eng., 7(2012), 288–299.

DOI: 10.1007/s11465-012-0333-4

Google Scholar

[34] R. Rao, V. Yadava, Multi-objective optimization of Nd:YAG laser cutting of thin superalloy sheet using grey relational analysis with entropy measurement, Optics & Laser Technology 41 (2009), 922–930.

DOI: 10.1016/j.optlastec.2009.03.008

Google Scholar

[35] J. A. Ray, Multi-Objective Optimization of Green EDM: An Integrated Theory, J. Inst. Eng. India Ser. C, 96 (2015), 41–47.

DOI: 10.1007/s40032-014-0142-0

Google Scholar

[36] S. H. Mahdaviani, M. Parvari, D. Soudbar, Simultaneous multi-objective optimization of a new promoted ethylene dimerization catalyst using grey relational analysis and entropy measurement, Korean J. Chem. Eng., 33(2016), 423-437.

DOI: 10.1007/s11814-015-0158-z

Google Scholar

[37] K. Cai, D. Wang, Optimizing the design of automotive S-rail using grey relational analysis coupled with grey entropy measurement to improve crashworthiness, Struct Multidisc Optim, 56 (2017), 1539-1553.

DOI: 10.1007/s00158-017-1728-y

Google Scholar

[38] S.-C. Huang, T.-P. Dao, Multi-objective Optimal Design of a 2-DOF Flexure-Based Mechanism Using Hybrid Approach of Grey-Taguchi Coupled Response Surface Methodology and Entropy Measurement, Arab J Sci Eng, 41 (2016), 5215-5231.

DOI: 10.1007/s13369-016-2242-z

Google Scholar

[39] W.Y. Li, Q. Chu, X.W. Yang, J.J. Shen, A. Vairis, W.B. Wang, Microstructure and morphology evolution of probeless friction stir spot welded joints of aluminum alloy, Journal of Materials Processing Tech., 252 (2018), 69-80.

DOI: 10.1016/j.jmatprotec.2017.09.003

Google Scholar

[40] Q. Chua, X.W. Yang, W.Y. Li, A. Vairis, W.B. Wang, Numerical analysis of material flow in the probeless friction stir spot welding based on Coupled Eulerian-Lagrangian approach, Journal of Manufacturing Processes, 36 (2018), 181-187.

DOI: 10.1016/j.jmapro.2018.10.013

Google Scholar

[41] J. Shen, S.B.M. Lage, U. F.H. Suhuddin, C. Bolfarini, J. F. Dos Santos, Texture Development and Material Flow Behavior During Refill Friction Stir Spot Welding of AlMgSc, Metallurgical and Materials Transactions A, 49 (2017), 241-254.

DOI: 10.1007/s11661-017-4381-6

Google Scholar

[42] A. Reilly, H. Shercliff, Y. Chen, P. Prangnell, Modelling and visualization of material flow in friction stir spot welding, Journal of Materials Processing Technology, 225(2018), 473-484.

DOI: 10.1016/j.jmatprotec.2015.06.021

Google Scholar

[43] R. Sarkar, T.K. Pal, M. Shome, Material Flow and Intermixing during Friction Stir Spot Welding of Steel, Journal of Materials Processing Technology, 227 (2016), 96-109.

DOI: 10.1016/j.jmatprotec.2015.08.006

Google Scholar

[46] O. O. Oladimeji, E. Taban, E. Kaluc, Understanding the role of welding parameters and tool profile on the morphology and properties of expelled flash of spot welds, Materials and Design, 108 (2016), 518-528.

DOI: 10.1016/j.matdes.2016.07.013

Google Scholar

[47] Wen K L, Chang T C, You M L, The grey entropy and its application in weighting analysis. In: Proceedings of IEEE International Conference on System, Man and Cybernetics, 2 (1998), 1842–1844.

DOI: 10.1109/icsmc.1998.728163

Google Scholar