[1]
S. Rehman, M.M. Alam, J.P. Meyer, L.M. Al-Hadhrami, Feasibility study of a wind–pv–diesel hybrid power system for a village, Renewable Energy, 38 (2012) 258-268.
DOI: 10.1016/j.renene.2011.06.028
Google Scholar
[2]
M. El-Shimy, H. Balcioglu, K. Soyer, M. A. Abdelraheem, M. Said, M. Noor, T. Abdo, B. Đurin, J. Vargas-Hernández, A. Cordova-Rangel, L. Nad, K. Pallagst, P. Hammer, N. Bailek, K. Bouchouicha, A. Slimani, N. Aoun, A. Razagui, N. Veggeland, Economics of Variable Renewable Sources for Electric Power Production, (2017).
Google Scholar
[3]
M.P. Fanti, A.M. Mangini, M. Roccotelli, A simulation and control model for building energy management, Control Engineering Practice, 72 (2018) 192-205.
DOI: 10.1016/j.conengprac.2017.11.010
Google Scholar
[4]
S. Ouchen, Contribution a la Commande Directe de Puissance Dediee au Filtrage Actif, Associe a une Source Photovoltaïque, in, Université Mohamed Khider-Biskra, (2017).
Google Scholar
[5]
H.M.A. Antunes, S.M. Silva, D.I. Brandao, A.A.P. Machado, B. de Jesus Cardoso Filho, Harmonic Compensation Using a Series Hybrid Filter in a Centralized AC Microgrid, Journal of Control, Automation and Electrical Systems, (2018) 1-11.
DOI: 10.1007/s40313-017-0365-4
Google Scholar
[6]
J. Das, Power system analysis: short-circuit load flow and harmonics, CRC press, (2016).
Google Scholar
[7]
P. Karuppanan, K.K. Mahapatra, PI and fuzzy logic controllers for shunt active power filter—A report, ISA transactions, 51 (2012) 163-169.
DOI: 10.1016/j.isatra.2012.04.009
Google Scholar
[8]
M. Odavic, V. Biagini, P. Zanchetta, M. Sumner, M. Degano, One-sample-period-ahead predictive current control for high-performance active shunt power filters, IET Power Electronics, 4 (2011) 414-423.
DOI: 10.1049/iet-pel.2010.0137
Google Scholar
[9]
H. Fujita, T. Yamasaki, H. Akagi, A hybrid active filter for damping of harmonic resonance in industrial power systems, IEEJ Transactions on Industry Applications, 118 (1998) 1193-1200.
DOI: 10.1541/ieejias.118.1193
Google Scholar
[10]
T.-L. Lee, Y.-C. Wang, J.-C. Li, J.M. Guerrero, Hybrid active filter with variable conductance for harmonic resonance suppression in industrial power systems, IEEE Transactions on Industrial Electronics, 62 (2015) 746-756.
DOI: 10.1109/tie.2014.2347008
Google Scholar
[11]
J. Das, Passive filters-potentialities and limitations, IEEE Transactions on Industry Applications, 40 (2004) 232-241.
DOI: 10.1109/tia.2003.821666
Google Scholar
[12]
S.B. Efe, Analysis and elimination of harmonics by using passive filters, Bitlis Eren University Journal of Science and Technology, 5 (2015).
DOI: 10.17678/beujst.47575
Google Scholar
[13]
S. Rahmani, A. Hamadi, K. Al-Haddad, L.A. Dessaint, A combination of shunt hybrid power filter and thyristor-controlled reactor for power quality, IEEE Transactions on Industrial Electronics, 61 (2014) 2152-2164.
DOI: 10.1109/tie.2013.2272271
Google Scholar
[14]
H. Akagi, Y. Kanazawa, A. Nabae, Instantaneous reactive power compensators comprising switching devices without energy storage components, IEEE Transactions on Industry Applications, (1984) 625-630.
DOI: 10.1109/tia.1984.4504460
Google Scholar
[15]
T. Al Chaer, J.-P. Gaubert, L. Rambault, M. Najjar, Output feedback control of a three-phase shunt active power filter, in: Power Electronics Specialists Conference, 2008. PESC 2008. IEEE, IEEE, 2008, pp.3819-3824.
DOI: 10.1109/pesc.2008.4592550
Google Scholar
[16]
C.H. da Silva, R.R. Pereira, L.E.B. da Silva, G. Lambert-Torres, B.K. Bose, Improving the dynamic response of shunt active power filter using modified Synchronous Reference Frame PLL, in: Industrial Electronics, 2008. IECON 2008. 34th Annual Conference of IEEE, IEEE, 2008, pp.790-795.
DOI: 10.1109/iecon.2008.4758054
Google Scholar
[17]
S. Li, X. Liang, J. Fei, Dynamic Surface Adaptive Fuzzy Control of Three-Phase Active Power Filter, IEEE Access, (2016).
DOI: 10.1109/access.2016.2636909
Google Scholar
[18]
J. Fei, T. Wang, Adaptive fuzzy-neural-network based on RBFNN control for active power filter, International Journal of Machine Learning and Cybernetics, (2018) 1-12.
DOI: 10.1007/s13042-018-0792-y
Google Scholar
[19]
S. Abdeldjalil, B. Chellali, K. Khaled, B. Nadjem, An Intelligent Controller for a Shunt Active Power Filter for a Three Phase Supply System, in: Proceedings of the 2017 International Conference on Mechatronics Systems and Control Engineering, ACM, 2017, pp.24-28.
DOI: 10.1145/3045714.3045717
Google Scholar
[20]
J. Gow, C. Manning, Development of a photovoltaic array model for use in power-electronics simulation studies, IEE Proceedings-Electric Power Applications, 146 (1999) 193-200.
DOI: 10.1049/ip-epa:19990116
Google Scholar
[21]
S.A.O. da Silva, L.B. Campanhol, V.D. Bacon, L.P. Sampaio, Single-phase grid-connected photovoltaic system with active power line conditioning, Power Electronics Journal, 20 (2015) 8-18.
DOI: 10.18618/rep.2015.1.008018
Google Scholar
[22]
O. Alonso, P. Sanchis, E. Gubia, L. Marroyo, Cascaded H-bridge multilevel converter for grid connected photovoltaic generators with independent maximum power point tracking of each solar array, in: Power Electronics Specialist Conference, 2003. PESC'03. 2003 IEEE 34th Annual, IEEE, 2003, pp.731-735.
DOI: 10.1109/pesc.2003.1218146
Google Scholar
[23]
M.G. Simões, F.A. Farret, Modeling Power Electronics and Interfacing Energy Conversion Systems, John Wiley & Sons, (2016).
Google Scholar
[24]
A. Ioinovici, Power Electronics and Energy Conversion Systems: Fundamentals and Hard-switching Converters. Volume 1, Wiley Online Library, (2013).
DOI: 10.1002/9781118443040
Google Scholar
[25]
S. Saravanan, N.R. Babu, RBFN based MPPT algorithm for PV system with high step up converter, Energy Conversion and Management, 122 (2016) 239-251.
DOI: 10.1016/j.enconman.2016.05.076
Google Scholar
[26]
A.I. Ali, M.A. Sayed, E.E. Mohamed, Modified efficient perturb and observe maximum power point tracking technique for grid-tied PV system, International Journal of Electrical Power & Energy Systems, 99 (2018) 192-202.
DOI: 10.1016/j.ijepes.2017.12.029
Google Scholar
[27]
H. Bounechba, A. Bouzid, H. Snani, A. Lashab, Real time simulation of MPPT algorithms for PV energy system, International Journal of Electrical Power & Energy Systems, 83 (2016) 67-78.
DOI: 10.1016/j.ijepes.2016.03.041
Google Scholar
[28]
H. Akagi, E.H. Watanabe, M. Aredes, Instantaneous power theory and applications to power conditioning, John Wiley & Sons, (2007).
DOI: 10.1002/0470118938
Google Scholar
[29]
M. Cucuzzella, R. Lazzari, S. Trip, S. Rosti, C. Sandroni, A. Ferrara, Sliding mode voltage control of boost converters in DC microgrids, Control Engineering Practice, 73 (2018) 161-170.
DOI: 10.1016/j.conengprac.2018.01.009
Google Scholar
[30]
J.C. Rosas-Caro, J.M. Ramírez, P.M. García-Vite, Novel DC-DC multilevel boost converter, in: Power electronics specialists conference, 2008. PESC 2008. IEEE, IEEE, 2008, pp.2146-2151.
DOI: 10.1109/pesc.2008.4592260
Google Scholar