A PV-Active Power Filter Interface Scheme for Three Phase Balanced System

Article Preview

Abstract:

This paper presents a modified hybrid Controller based on instantaneous power-fuzzy controller (IPFLC) for a shunt active power filter (SAPF). The current produced by the AC source is polluted by harmonics injected by the non-linear loads. The supply system requires filtering by suppressing harmonic currents to improve power quality at interface bus. The filtering system consists of an LC filter and a SAPF. The proposed IPFL Controller for the SAPF is based on a combination of the p-q instantaneous power and the fuzzy logic strategy. In this part, two cases are studied, first the active filter is connected only to a capacitor by its dc side, and second case where the active filter is connected to a photovoltaic source or to a battery. The effectiveness, robustness and the dynamic speed of the proposed controller is validated and assessed using dynamic digital simulation. Digital Simulation results validated also the effectiveness of the active filter scheme with modified controller in reducing the source current THD from 25.87% to 0.83% which largely meets the standards of IEEE STD and International Electro-technical Commission (IEC). Digital Simulation and validation used MATLAB-SIMULINK Software Environment.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] S. Rehman, M.M. Alam, J.P. Meyer, L.M. Al-Hadhrami, Feasibility study of a wind–pv–diesel hybrid power system for a village, Renewable Energy, 38 (2012) 258-268.

DOI: 10.1016/j.renene.2011.06.028

Google Scholar

[2] M. El-Shimy, H. Balcioglu, K. Soyer, M. A. Abdelraheem, M. Said, M. Noor, T. Abdo, B. Đurin, J. Vargas-Hernández, A. Cordova-Rangel, L. Nad, K. Pallagst, P. Hammer, N. Bailek, K. Bouchouicha, A. Slimani, N. Aoun, A. Razagui, N. Veggeland, Economics of Variable Renewable Sources for Electric Power Production, (2017).

Google Scholar

[3] M.P. Fanti, A.M. Mangini, M. Roccotelli, A simulation and control model for building energy management, Control Engineering Practice, 72 (2018) 192-205.

DOI: 10.1016/j.conengprac.2017.11.010

Google Scholar

[4] S. Ouchen, Contribution a la Commande Directe de Puissance Dediee au Filtrage Actif, Associe a une Source Photovoltaïque, in, Université Mohamed Khider-Biskra, (2017).

Google Scholar

[5] H.M.A. Antunes, S.M. Silva, D.I. Brandao, A.A.P. Machado, B. de Jesus Cardoso Filho, Harmonic Compensation Using a Series Hybrid Filter in a Centralized AC Microgrid, Journal of Control, Automation and Electrical Systems, (2018) 1-11.

DOI: 10.1007/s40313-017-0365-4

Google Scholar

[6] J. Das, Power system analysis: short-circuit load flow and harmonics, CRC press, (2016).

Google Scholar

[7] P. Karuppanan, K.K. Mahapatra, PI and fuzzy logic controllers for shunt active power filter—A report, ISA transactions, 51 (2012) 163-169.

DOI: 10.1016/j.isatra.2012.04.009

Google Scholar

[8] M. Odavic, V. Biagini, P. Zanchetta, M. Sumner, M. Degano, One-sample-period-ahead predictive current control for high-performance active shunt power filters, IET Power Electronics, 4 (2011) 414-423.

DOI: 10.1049/iet-pel.2010.0137

Google Scholar

[9] H. Fujita, T. Yamasaki, H. Akagi, A hybrid active filter for damping of harmonic resonance in industrial power systems, IEEJ Transactions on Industry Applications, 118 (1998) 1193-1200.

DOI: 10.1541/ieejias.118.1193

Google Scholar

[10] T.-L. Lee, Y.-C. Wang, J.-C. Li, J.M. Guerrero, Hybrid active filter with variable conductance for harmonic resonance suppression in industrial power systems, IEEE Transactions on Industrial Electronics, 62 (2015) 746-756.

DOI: 10.1109/tie.2014.2347008

Google Scholar

[11] J. Das, Passive filters-potentialities and limitations, IEEE Transactions on Industry Applications, 40 (2004) 232-241.

DOI: 10.1109/tia.2003.821666

Google Scholar

[12] S.B. Efe, Analysis and elimination of harmonics by using passive filters, Bitlis Eren University Journal of Science and Technology, 5 (2015).

DOI: 10.17678/beujst.47575

Google Scholar

[13] S. Rahmani, A. Hamadi, K. Al-Haddad, L.A. Dessaint, A combination of shunt hybrid power filter and thyristor-controlled reactor for power quality, IEEE Transactions on Industrial Electronics, 61 (2014) 2152-2164.

DOI: 10.1109/tie.2013.2272271

Google Scholar

[14] H. Akagi, Y. Kanazawa, A. Nabae, Instantaneous reactive power compensators comprising switching devices without energy storage components, IEEE Transactions on Industry Applications, (1984) 625-630.

DOI: 10.1109/tia.1984.4504460

Google Scholar

[15] T. Al Chaer, J.-P. Gaubert, L. Rambault, M. Najjar, Output feedback control of a three-phase shunt active power filter, in: Power Electronics Specialists Conference, 2008. PESC 2008. IEEE, IEEE, 2008, pp.3819-3824.

DOI: 10.1109/pesc.2008.4592550

Google Scholar

[16] C.H. da Silva, R.R. Pereira, L.E.B. da Silva, G. Lambert-Torres, B.K. Bose, Improving the dynamic response of shunt active power filter using modified Synchronous Reference Frame PLL, in: Industrial Electronics, 2008. IECON 2008. 34th Annual Conference of IEEE, IEEE, 2008, pp.790-795.

DOI: 10.1109/iecon.2008.4758054

Google Scholar

[17] S. Li, X. Liang, J. Fei, Dynamic Surface Adaptive Fuzzy Control of Three-Phase Active Power Filter, IEEE Access, (2016).

DOI: 10.1109/access.2016.2636909

Google Scholar

[18] J. Fei, T. Wang, Adaptive fuzzy-neural-network based on RBFNN control for active power filter, International Journal of Machine Learning and Cybernetics, (2018) 1-12.

DOI: 10.1007/s13042-018-0792-y

Google Scholar

[19] S. Abdeldjalil, B. Chellali, K. Khaled, B. Nadjem, An Intelligent Controller for a Shunt Active Power Filter for a Three Phase Supply System, in: Proceedings of the 2017 International Conference on Mechatronics Systems and Control Engineering, ACM, 2017, pp.24-28.

DOI: 10.1145/3045714.3045717

Google Scholar

[20] J. Gow, C. Manning, Development of a photovoltaic array model for use in power-electronics simulation studies, IEE Proceedings-Electric Power Applications, 146 (1999) 193-200.

DOI: 10.1049/ip-epa:19990116

Google Scholar

[21] S.A.O. da Silva, L.B. Campanhol, V.D. Bacon, L.P. Sampaio, Single-phase grid-connected photovoltaic system with active power line conditioning, Power Electronics Journal, 20 (2015) 8-18.

DOI: 10.18618/rep.2015.1.008018

Google Scholar

[22] O. Alonso, P. Sanchis, E. Gubia, L. Marroyo, Cascaded H-bridge multilevel converter for grid connected photovoltaic generators with independent maximum power point tracking of each solar array, in: Power Electronics Specialist Conference, 2003. PESC'03. 2003 IEEE 34th Annual, IEEE, 2003, pp.731-735.

DOI: 10.1109/pesc.2003.1218146

Google Scholar

[23] M.G. Simões, F.A. Farret, Modeling Power Electronics and Interfacing Energy Conversion Systems, John Wiley & Sons, (2016).

Google Scholar

[24] A. Ioinovici, Power Electronics and Energy Conversion Systems: Fundamentals and Hard-switching Converters. Volume 1, Wiley Online Library, (2013).

DOI: 10.1002/9781118443040

Google Scholar

[25] S. Saravanan, N.R. Babu, RBFN based MPPT algorithm for PV system with high step up converter, Energy Conversion and Management, 122 (2016) 239-251.

DOI: 10.1016/j.enconman.2016.05.076

Google Scholar

[26] A.I. Ali, M.A. Sayed, E.E. Mohamed, Modified efficient perturb and observe maximum power point tracking technique for grid-tied PV system, International Journal of Electrical Power & Energy Systems, 99 (2018) 192-202.

DOI: 10.1016/j.ijepes.2017.12.029

Google Scholar

[27] H. Bounechba, A. Bouzid, H. Snani, A. Lashab, Real time simulation of MPPT algorithms for PV energy system, International Journal of Electrical Power & Energy Systems, 83 (2016) 67-78.

DOI: 10.1016/j.ijepes.2016.03.041

Google Scholar

[28] H. Akagi, E.H. Watanabe, M. Aredes, Instantaneous power theory and applications to power conditioning, John Wiley & Sons, (2007).

DOI: 10.1002/0470118938

Google Scholar

[29] M. Cucuzzella, R. Lazzari, S. Trip, S. Rosti, C. Sandroni, A. Ferrara, Sliding mode voltage control of boost converters in DC microgrids, Control Engineering Practice, 73 (2018) 161-170.

DOI: 10.1016/j.conengprac.2018.01.009

Google Scholar

[30] J.C. Rosas-Caro, J.M. Ramírez, P.M. García-Vite, Novel DC-DC multilevel boost converter, in: Power electronics specialists conference, 2008. PESC 2008. IEEE, IEEE, 2008, pp.2146-2151.

DOI: 10.1109/pesc.2008.4592260

Google Scholar