Non-Adaptive Decision Thresholds for Gain Saturated FSO Links Limited by Weak to Strong Turbulence and Pointing Errors

Article Preview

Abstract:

In free space optical (FSO) communication systems limited by atmospheric turbulence, the use of non-adaptive decision thresholds to determine the transmitted bits results in bit error rate (BER) floors at high BER values in all turbulence regimes. Practically implementing an adaptive decision threshold that can properly track the fluctuations due to atmospheric turbulence is challenging, therefore, devising ways of optimising the non-adaptive decision threshold used by FSO designers is necessary. In this paper, the investigation of gain saturated pre-amplified FSO communication systems using non-adaptive decision thresholds in the presence of atmospheric turbulence, pointing errors (PEs), geometric spread (GS) and amplified spontaneous emission noise is carried out by applying analytical methods and Monte Carlo (MC) simulation techniques. System performance is carried out for various turbulence regimes, normalised beam widths, normalised PE standard deviations and small signal gains using fixed gain and gain saturated optical amplifiers (OAs). Results obtained show that in the presence of atmospheric turbulence, PE and GS, optimal BER performances are obtained with OA input powers higher than the internal saturation power of the OA. Also, by using high gain OAs and varying the decision threshold level, acceptable BER performances can be obtained in strong turbulence regimes with a non-adaptive decision threshold.

You might also be interested in these eBooks

Info:

Pages:

63-75

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Kiasaleh, Receiver Architecture for Channel-Aided, OOK, APD-Based FSO Communications Through Turbulent Atmosphere,, IEEE Trans. Communications, 63(1), pp.186-194, (2015).

DOI: 10.1109/tcomm.2014.2367000

Google Scholar

[2] L. Yang, X. Song, J. Cheng, and J. F. Holzman, Free-space optical communications over lognormal fading channels using OOK with finite extinction ratios,, IEEE Access, 4, pp.574-584, (2016).

DOI: 10.1109/access.2016.2520936

Google Scholar

[3] L. Fei and L. Houbing, Optimum detection threshold for free-space optical communication with atmospheric scintillation,, in International Conference on Optoelectronics and Microelectronics (ICOM), (2015), pp.191-196.

DOI: 10.1109/icoom.2015.7398802

Google Scholar

[4] Z. Ghassemlooy, W. O. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB, Boca Raton, FL 33487-2742, (2013).

DOI: 10.1201/9781315151724

Google Scholar

[5] A. O. Aladeloba, A. J. Phillips, and M. S. Woolfson, DPPM FSO communication systems impaired by turbulence, pointing error and ASE noise,, in 14th International Conference on Transparent Optical Networks (ICTON), (2012), pp.1-4.

DOI: 10.1109/icton.2012.6253854

Google Scholar

[6] Z. Ghassemlooy and W. Popoola, Terrestrial Free-Space Optical Communications, InTech, (2010), pp.355-392.

Google Scholar

[7] S. Bloom, E. Korevaar, J. Schuster, and H. Willebrand, Understanding the performance of free-space optics, Journal of optical Networking, 2(6), pp.178-200, (2003).

DOI: 10.1364/jon.2.000178

Google Scholar

[8] J. Park, E. Lee, C. B. Chae, and G. Yoon, Impact of Pointing Errors on the Performance of Coherent Free-Space Optical Systems,, IEEE Photonics Technology Letters, 28(2): pp.181-184, (2016).

DOI: 10.1109/lpt.2015.2489383

Google Scholar

[9] K. P. Peppas, A. N. Stassinakis, H. E. Nistazakis, and G. S. Tombras, Capacity analysis of dual amplify-and-forward relayed free-space optical communication systems over turbulence channels with pointing errors,, Journal of Optical Communications and Networking, 5(9): pp.1032-1042, (2013).

DOI: 10.1364/jocn.5.001032

Google Scholar

[10] M. I. Petković and G. T. Đorđević, Effects of pointing errors on average capacity of FSO links over gamma-gamma turbulence channel,, in 11th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services (TELSIKS), (2013), vol. 2, pp.481-484.

DOI: 10.1109/telsks.2013.6704423

Google Scholar

[11] H. R. Burris Jr, C. I. Moore, L. A. Swingen, L. M. Wasiczko, R. Mahon, M. F. Stell, W. S. Rabinovich, J. L. Murphy, G. C. Gilbreath, and W. J. Scharpf, Laboratory implementation of an adaptive thresholding system for free-space optical communication receivers with signal dependent noise,, in Free-Space Laser Communications, International Society for Optics and Photonics, vol. 5892, pp. 58920W, (2005).

DOI: 10.21236/ada472203

Google Scholar

[12] H. R. Burris, A. E. Reed, N. M. Namazi, W. J. Scharpf, M. J. Vicheck, M. F. Stell, and M. R. Suite, Adaptive thresholding for free-space optical communication receivers with multiplicative noise,, in Aerospace Conference Proceedings, vol. 3, pp.3-3, (2002).

DOI: 10.1109/aero.2002.1035284

Google Scholar

[13] Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications: system and channel modelling with Matlab®, CRC press, (2012).

DOI: 10.1201/9781315151724

Google Scholar

[14] S. Gurugopinath, Detection of on-off keying over weak atmospheric turbulence channels in free-space optics,, in Workshop on Recent Advances in Photonics (WRAP), pp.1-4, (2015).

DOI: 10.1109/wrap.2015.7806000

Google Scholar

[15] Z. Wang, W. D. Zhong, S. Fu, and C. Lin, Performance comparison of different modulation formats over free-space optical (FSO) turbulence links with space diversity reception technique,, IEEE Photonics Journal, 1(6), pp.277-285, (2009).

DOI: 10.1109/jphot.2009.2039015

Google Scholar

[16] L. Yang, B. Zhu, J. Cheng, and J. F. Holzman, Free-space optical communications using on–off keying and source information transformation,, Journal of Lightwave Technology, 34(11), pp.2601-2609, (2016).

DOI: 10.1109/jlt.2016.2542203

Google Scholar

[17] S. S. Nam, M. S. Alouini, and Y. C. Ko, Performance Analysis of a Threshold-Based Parallel Multiple Beam Selection Scheme for WDM FSO Systems,. IEEE Access, 6, pp.21498-21517, (2018).

DOI: 10.1109/access.2018.2823298

Google Scholar

[18] M. T. Dabiri and S. M. S. Sadough, Near MAP channel estimation for FSO-OOK over atmospheric turbulence with pointing errors,, in Iranian Conference on Electrical Engineering (ICEE), (2017), pp.1950-1954.

DOI: 10.1109/iraniancee.2017.7985374

Google Scholar

[19] M. I. Petkovic, and G. T. Dordevic, Effects of pointing errors on average capacity of FSO links over gamma-gamma turbulence channel,, in 11th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services (TELSIKS), (2013), vol. 2, pp.481-484.

DOI: 10.1109/telsks.2013.6704423

Google Scholar

[20] R. Ramaswami, K. Sivarajan, and G. Sasaki, Optical networks: a practical perspective, Morgan Kaufmann, (2009).

Google Scholar

[21] M. Abtahi, P. Lemieux, W. Mathlouthi, and L. A. Rusch, Suppression of turbulence-induced scintillation in free-space optical communication systems using saturated optical amplifiers,, Journal of Lightwave technology, 24(12), pp.4966-4973, (2006).

DOI: 10.1109/jlt.2006.884561

Google Scholar

[22] K. Yiannopoulos, N. C. Sagias, and A.C. Boucouvalas, Fade mitigation based on semiconductor optical amplifiers,, Journal of Lightwave Technology, 31(23), pp.3621-3630, (2013).

DOI: 10.1109/jlt.2013.2285260

Google Scholar

[23] O. J. Bandele, P. Desai, M. S. Woolfson, and A. J. Phillips, Saturation in cascaded optical amplifier free-space optical communication systems,, IET Optoelectronics, 10(3), pp.71-79, (2016).

DOI: 10.1049/iet-opt.2015.0083

Google Scholar

[24] O. J. Bandele, M. S. Woolfson, and A. J. Phillips, Saturation in wavelength-division multiplexing free-space optical communication systems,, Frontiers of Optoelectronics, (2019), 12:197, https://doi.org/10.1007/s12200-018-0838-5.

DOI: 10.1007/s12200-018-0838-5

Google Scholar

[25] A.K. Majumdar, Free-space laser communication performance in the atmospheric channel,, Journal of Optical and Fiber Communications Reports, 2(4), pp.345-396, (2005).

DOI: 10.1007/s10297-005-0054-0

Google Scholar

[26] A. O. Aladeloba, A. J. Phillips, and M. S. Woolfson, DPPM FSO communication systems impaired by turbulence, pointing error and ASE noise,, in 14th International Conference on Transparent Optical Networks (ICTON), (2012), pp.1-4.

DOI: 10.1109/icton.2012.6253854

Google Scholar

[27] H. G. Sandalidis, T. A. Tsiftsis, G. K. Karagiannidis, and M. Uysal, BER performance of FSO links over strong atmospheric turbulence channels with pointing errors,, IEEE Communications Letters, 12(1), pp.44-46, (2008).

DOI: 10.1109/lcomm.2008.071408

Google Scholar

[28] H. J. Eom, G. Y. Hur, T. J. Park, and S. H. O. G. O. Kozaki, Gaussian beam scattering from a semicircular boss above a conducting plane,, IEEE transactions on antennas and propagation, 41(1), pp.106-108, (1993).

DOI: 10.1109/8.210124

Google Scholar

[29] A. A. Farid and S. Hranilovic, Outage capacity optimization for free-space optical links with pointing errors,, Journal of Lightwave technology, 25(7), pp.1702-1710, (2007).

DOI: 10.1109/jlt.2007.899174

Google Scholar

[30] N. Metropolis, The beginning of the Monte Carlo method,, Los Alamos Science, 15(584), pp.125-130, (1987).

Google Scholar