[1]
R.E., Jr. Sanders, P. Hollinshead, E.A. Simielli, Industrial development of non-heat treatable aluminum alloys. Mater. Forum (2004), 28, 53–64.
Google Scholar
[2]
Davis, J.R., Corrosion of Aluminum and Aluminum Alloys; J. R. Davis & Associates, ASM International: Metals Park, OH, USA, 1999 pp.3-8.
Google Scholar
[3]
L. F. Mondolfo, Aluminum Alloys Structures and Properties, Butterworth, London, 12, 0-408-70680-5, (1976), 1-3.
Google Scholar
[4]
W.M. Lee, M.A. ZikryHigh strain-rate modeling of the interfacial effects of dispersed particles in high strength aluminum alloys Int. J. Solids Struct., 49 (2012), pp.3291-3300.
DOI: 10.1016/j.ijsolstr.2012.07.003
Google Scholar
[5]
GW. Nieman, JR. Weertman, RW.Siegel, J Mater Res 1991; 6:1012.
Google Scholar
[6]
RZ. Valiev, RK. Islamgaliev, IV. Alexandrov. Prog Mater Sci., 2000; 45:103.
Google Scholar
[7]
E. Ma. Scripta Mater 2003;49:663.
Google Scholar
[8]
KS. Kumar, H. Van Swygenhoven, S. Suresh. Acta Mater 2003;51:5743.
Google Scholar
[9]
KM. Youssef, RO. Scattergood, KL. Murty, CC. Koch. Appl Phys Lett 2004;85:929.
Google Scholar
[10]
GJ. Fan, LF. Fu, YD. Wang, H. Choo, Y. Ren, PK. Liaw, et al. Phys Rev Lett (to be published).
Google Scholar
[11]
SJ V. Frankland, VM. Harik, GM. Odegard, DW. Brenner, TS. Gates. The stress–strain behavior of polymer– nanotube composites from molecular dynamics simulation. Compos Sci Technol 2003; 63: 1655–61.
DOI: 10.1016/s0266-3538(03)00059-9
Google Scholar
[12]
LC Saha, Mian SA, Jang J. Molecular Dynamics Simulation Study on the Carbon Nanotube Interacting with a Polymer. Bull Korean Chem Soc 2012;33:893–6.
Google Scholar
[13]
H. Chabba, M. Lemaalem, A. Derouiche, F. BELMIR, D. Dafir, Modeling aluminum using molecular dynamics simulation J. Mater. Environ. Sci.,Volume 9 (2018).
Google Scholar
[14]
F. Ercolessi and J.B. Adams, Europhys. Lett. 26 (1994) 583.
Google Scholar
[15]
X.-Y. Liu, J.B. Adams, F. Ercolessi and J. Moriarty, in preparation.
Google Scholar
[16]
M.S. Daw, M.I. Baskes. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals J. Physical Review B. 1984, 29(12):6443-6453.
DOI: 10.1103/physrevb.29.6443
Google Scholar
[17]
Ivanov et al., 1963; Kumar and Kumble, (1969).
Google Scholar
[18]
S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys, 117, 1-19 (1995).
Google Scholar
[19]
A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool Model. Simul. Mater. Sci. Eng., 18 (2010), p.015012.
DOI: 10.1088/0965-0393/18/1/015012
Google Scholar
[20]
K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,, J. Appl. Crystallogr., 44, 1272-1276 (2011).
DOI: 10.1107/s0021889811038970
Google Scholar
[21]
Y. Zhong, M. Yang, and Z.-K. Liu, Contribution of first principles energetics to Al-Mg thermodynamic modeling,, Calphad, vol. 29, no. 4, p.303–311, (2005).
DOI: 10.1016/j.calphad.2005.08.004
Google Scholar
[22]
J.L. Murray, The Al-Mg (Aluminium-magnesium) System. Bulletin of Alloy Phase Diagrams 3:61, (1982).
Google Scholar
[23]
Zuo Y. CYA. Thermodynamic calculation of the Al-Mg Phase diagram. CALPHAD. Vol.17, No.2. pp.161-174. (1993).
DOI: 10.1016/0364-5916(93)90017-6
Google Scholar
[24]
Su H.L., Harmelin M., Donnadieu P., Beatzner C., Seifert H., Lukas H.L., Effenberg G., F. A. Experimental investigation of the Mg-Al phase diagram from 47 to 63 at.% Al. Journal of alloys and compounds 1997;247:57.
DOI: 10.1016/s0925-8388(96)02595-9
Google Scholar
[25]
M.J. Starink and A-M. Zahra, Acta Mater. 46, 3381 (1998). 10. H. Okamoto, J. Phase Equilibria 19, 598 (1998).
Google Scholar
[26]
J.L. Murray, The Al-Mg (Aluminium-magnesium) System. Bulletin of Alloy Phase Diagrams 3:60, (1982).
Google Scholar
[27]
Ragani J., Donnadieu P., Tassin C., ET AL.: High-temperature deformation of the c-Mg17Al12 complex metallic alloy,, Scr. Mater., 2011, 65, p.253–256.
DOI: 10.1016/j.scriptamat.2011.04.022
Google Scholar
[28]
Wang L., Liu H.: The microstructural evolution of Al12Mg17 alloy during the quenching processes,, J. Non-Cryst. Solids, 2006, 352, p.2880–2884.
DOI: 10.1016/j.jnoncrysol.2006.02.090
Google Scholar
[29]
Su H.L., Harmelin M., Donnadieu P., Beatzner C., Seifert H., Lukas H.L., Effenberg G., F. A. Experimental investigation of the Mg-Al phase diagram from 47 to 63 at.% Al. Journal of alloys and compounds 1997; p.247:57.
DOI: 10.1016/s0925-8388(96)02595-9
Google Scholar
[30]
A. Calka, W. Kaczmarek, and J.S. Williams, J. Mater. Sci. 28, 15 (1993).
Google Scholar
[31]
D.L. Zhang, T.B. Massalski, and M.R. Paruchuri, Metall. Mater. Trans. 25A, 73 (1994).
Google Scholar
[32]
P. Villars and K. Cenzual, Pearaon'a Cryatal Data—Cryatal Structure Database for Inorganic Compounda (on CD-ROM), ASM International, Materials Park, Ohio, USA, (2009).
Google Scholar
[33]
H. Perlitz: Nature (London) 154 (1944) 606.
Google Scholar
[34]
A. Samson: Acta Crystallogr. 19 (1965) 401–413.
Google Scholar
[35]
THESE Bertha Rocío VALDES LOPEZ, Etude de transformations de phases dans des alliages d'aluminium par la technique des couples de diffusion soutenue le 13 juillet 2006 P. 8.
Google Scholar
[36]
M.I. Mendelev, M. Asta, M.J. Rahman & J.J. Hoyt (2009) Development of interatomic potentials appropriate for simulation of solid–liquid interface properties in Al–Mg alloys, Philosophical Magazine,89:34-36, 3269-3285.
DOI: 10.1080/14786430903260727
Google Scholar
[37]
S. M. Foiles, M. I. Baskes, M. S. Daw, Phys. Rev. B, 33, (1986), 7983–7991.
Google Scholar
[38]
M. I. Baskes, Phys. Rev. B 46, 2727 (1992).
Google Scholar
[39]
M.J. Starink and A-M. Zahra, Acta Mater. 46, 3381 (1998). 10. H. Okamoto, J. Phase Equilibria 19, 598 (1998).
Google Scholar
[40]
L. VERLET, Computer « experiments » on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev., 98, p.159 (1967).
DOI: 10.1103/physrev.159.98
Google Scholar
[41]
L. VERLET, Computer « experiments » on classical fluids. II. Equilibrium correlation functions. Phys. Rev., 201, p.165 (1968).
DOI: 10.1103/physrev.165.201
Google Scholar
[42]
Gibbs, Josiah Willard (1902). Elementary Principles in Statistical Mechanics. New York: Charles Scribner's Sons.
Google Scholar
[43]
Posch, Harald A. (1986-01-01). Canonical dynamics of the Nosé oscillator: Stability, order, and chaos,. Physical Review A. 33 (6): 4253–4265.
DOI: 10.1103/physreva.33.4253
Google Scholar
[44]
A. Stukowski Structure identification methods for atomistic simulations of crystalline materials Model. Simul. Mater. Sci. Eng., 20 (2012), p.045021.
DOI: 10.1088/0965-0393/20/4/045021
Google Scholar
[45]
J.D. Honeycutt, H.C. Andersen Molecular dynamics study of melting and freezing of small Lennard-Jones clusters J. Phys. Chem., 91 (1987), pp.4950-4963.
DOI: 10.1021/j100303a014
Google Scholar
[46]
J. Yarnell, M. Katz, R. Wenzel, S. Koenig, (1973). Structure Factor and Radial Distribution Function for Liquid Argon at 85 °K,. Physical Review A. 7 (6): 2130.
DOI: 10.1103/physreva.7.2130
Google Scholar
[47]
Information on http://www.globalsino.com/EM/page3097.html.
Google Scholar
[48]
C.C. Wang, C.H. Wong, Short-to-medium range order of Al–Mg metallic glasses studied by molecular dynamics simulations, Journal of Alloys and Compounds 509 (2011) 10222– 10229.
DOI: 10.1016/j.jallcom.2011.08.075
Google Scholar
[49]
M. Feuerbacher, Carsten Thomas, Julien Makongo, S. Hoffman, Wilder Carillo-Cabrera, et al. The Samson phase, β-Mg2Al3, revisited. Zeitschrift für Kristallographie, De Gruyter, 2007, 222 (6).
Google Scholar
[50]
F.W. Von Batchelder and R. F. Raeuchle, lattice constants and brillouin zone overlap in dilute magnesium alloys, physical review, volume 105, number 1, January 1, (1957).
DOI: 10.1103/physrev.105.59
Google Scholar
[51]
ASTME 111, Standard Test Method for Young's Modulus, Tangent Modulus, and Chord Modulus,. Book of Standards Volume: 03.01.
DOI: 10.1520/e0111-04r10
Google Scholar
[52]
Yin Wang, Philip B. Prangnell, The significance of intermetallic compounds formed during interdiffusion in aluminum and magnesium dissimilar welds, J. Materials Characterization 134 (2017) 84–95.
DOI: 10.1016/j.matchar.2017.09.040
Google Scholar
[53]
Luping Long, Wensheng Liu, Yunzhu Ma*, Lei Wu and Siwei Tang, Evolution of Voids in Mg/Al Diffusion Bonding Process, High Temp. Mater. Proc. ; 36(10): 985–992, July 16, (2016).
DOI: 10.1515/htmp-2016-0024
Google Scholar
[54]
Information on https://www.americanelements.com/aluminum-magnesium-alloy-12604-68-1.
Google Scholar
[55]
Feng WANG, Shi-jie SUN, Bo YU, Feng ZHANG, Ping-li MAO, Zheng LIU, First principles investigation of binary intermetallics in Mg−Al−Ca−Sn alloy: Stability, electronic structures, elastic properties and thermodynamic properties, 2 July (2015).
DOI: 10.1016/s1003-6326(16)64107-9
Google Scholar
[56]
H. Zhang, S. Shang, Y. Wang, A. Saengdeejing, L. Chen, Z. Liu, Acta Mater. 58 (2010) 4012–4018.
Google Scholar
[57]
D. Zhou, J. Liu, S. Xu, P. Peng, Phys. B Condens. Matter 405B (2010) 2863–2868.
Google Scholar
[58]
Information on Material property data-WEBQC, http://www.webqc.org/mmcalc.php.
Google Scholar