Compression Behavior of Al-Mg Phases, Molecular Dynamics Simulation

Article Preview

Abstract:

Aluminum alloys development always exit in the manufacturing process. Al/Mg alloys have been attracted significant attention because of their excellent mechanical properties. The microstructural evolution and deformation mechanisms are still challenging issues, and it is hard to observe directly by experimental methods. Accordingly, in this paper atomic simulations are performed to investigate the uniaxial compressive behavior of Al/Mg phases; with different ratio of Mg ranging from 31% to 56%. The compression is at the same strain rate (3.1010 s⁻¹), at the same temperature (300K) and pressure, using embedded atom method (EAM) potential to model the interactions and the deformation behavior between Al and Mg.From these simulations, we get the radial distribution function; the stress–strain responses to describe the elastic and plastic behaviors of β-Al3Mg2, ε-Al30Mg23, Al1Mg1 and γ-Al12Mg17 phases with 31, 41, 50 and 56% of Mg added to pure aluminum, respectively. The mechanical properties, such as Young’s modulus, elasticity limit and rupture pressure, are determined and presented. The engineering equation was used to plot the stress-strain curve for each phase.From the results obtained, the chemical composition has a significant effect on the properties of these phases. The stress-strain behavior comprised elastic, yield, strain softening and strain hardening regions that were qualitatively in agreement with previous simulations and experimental results. These stress-strain diagrams obtained show a rapid increase in stress up to a maximum followed by a gradual drop when the specimen fails by ductile fracture. Under compression, the deformation behavior of β-Al3Mg2 and γ-Al12Mg17 phases is slightly similar. From the results, it was found that ε-Al30Mg23 phase are brittle under uniaxial compressive loading and γ-Al12Mg17 phase is very ductile under the same compressive loading.The engineering stress-strain relationship suggests that β-Al3Mg2 and γ-Al12Mg17 phases have high elasticity limit, ability to resist deformation and also have the advantage of being highly malleable. From this simulation, we also find that the mechanical properties under compressive load of ε-Al30Mg23 phase are evidently less than other phases, which makes it the weakest phase. The obtained results were compared with the previous experimental studies, and generally, there is a good correlation.The Al-Mg system was built and simulated using molecular dynamics (MD) software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator).

You might also be interested in these eBooks

Info:

Pages:

15-31

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.E., Jr. Sanders, P. Hollinshead, E.A. Simielli, Industrial development of non-heat treatable aluminum alloys. Mater. Forum (2004), 28, 53–64.

Google Scholar

[2] Davis, J.R., Corrosion of Aluminum and Aluminum Alloys; J. R. Davis & Associates, ASM International: Metals Park, OH, USA, 1999 pp.3-8.

Google Scholar

[3] L. F. Mondolfo, Aluminum Alloys Structures and Properties, Butterworth, London, 12, 0-408-70680-5, (1976), 1-3.

Google Scholar

[4] W.M. Lee, M.A. ZikryHigh strain-rate modeling of the interfacial effects of dispersed particles in high strength aluminum alloys Int. J. Solids Struct., 49 (2012), pp.3291-3300.

DOI: 10.1016/j.ijsolstr.2012.07.003

Google Scholar

[5] GW. Nieman, JR. Weertman, RW.Siegel, J Mater Res 1991; 6:1012.

Google Scholar

[6] RZ. Valiev, RK. Islamgaliev, IV. Alexandrov. Prog Mater Sci., 2000; 45:103.

Google Scholar

[7] E. Ma. Scripta Mater 2003;49:663.

Google Scholar

[8] KS. Kumar, H. Van Swygenhoven, S. Suresh. Acta Mater 2003;51:5743.

Google Scholar

[9] KM. Youssef, RO. Scattergood, KL. Murty, CC. Koch. Appl Phys Lett 2004;85:929.

Google Scholar

[10] GJ. Fan, LF. Fu, YD. Wang, H. Choo, Y. Ren, PK. Liaw, et al. Phys Rev Lett (to be published).

Google Scholar

[11] SJ V. Frankland, VM. Harik, GM. Odegard, DW. Brenner, TS. Gates. The stress–strain behavior of polymer– nanotube composites from molecular dynamics simulation. Compos Sci Technol 2003; 63: 1655–61.

DOI: 10.1016/s0266-3538(03)00059-9

Google Scholar

[12] LC Saha, Mian SA, Jang J. Molecular Dynamics Simulation Study on the Carbon Nanotube Interacting with a Polymer. Bull Korean Chem Soc 2012;33:893–6.

Google Scholar

[13] H. Chabba, M. Lemaalem, A. Derouiche, F. BELMIR, D. Dafir, Modeling aluminum using molecular dynamics simulation J. Mater. Environ. Sci.,Volume 9 (2018).

Google Scholar

[14] F. Ercolessi and J.B. Adams, Europhys. Lett. 26 (1994) 583.

Google Scholar

[15] X.-Y. Liu, J.B. Adams, F. Ercolessi and J. Moriarty, in preparation.

Google Scholar

[16] M.S. Daw, M.I. Baskes. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals J. Physical Review B. 1984, 29(12):6443-6453.

DOI: 10.1103/physrevb.29.6443

Google Scholar

[17] Ivanov et al., 1963; Kumar and Kumble, (1969).

Google Scholar

[18] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys, 117, 1-19 (1995).

Google Scholar

[19] A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool Model. Simul. Mater. Sci. Eng., 18 (2010), p.015012.

DOI: 10.1088/0965-0393/18/1/015012

Google Scholar

[20] K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,, J. Appl. Crystallogr., 44, 1272-1276 (2011).

DOI: 10.1107/s0021889811038970

Google Scholar

[21] Y. Zhong, M. Yang, and Z.-K. Liu, Contribution of first principles energetics to Al-Mg thermodynamic modeling,, Calphad, vol. 29, no. 4, p.303–311, (2005).

DOI: 10.1016/j.calphad.2005.08.004

Google Scholar

[22] J.L. Murray, The Al-Mg (Aluminium-magnesium) System. Bulletin of Alloy Phase Diagrams 3:61, (1982).

Google Scholar

[23] Zuo Y. CYA. Thermodynamic calculation of the Al-Mg Phase diagram. CALPHAD. Vol.17, No.2. pp.161-174. (1993).

DOI: 10.1016/0364-5916(93)90017-6

Google Scholar

[24] Su H.L., Harmelin M., Donnadieu P., Beatzner C., Seifert H., Lukas H.L., Effenberg G., F. A. Experimental investigation of the Mg-Al phase diagram from 47 to 63 at.% Al. Journal of alloys and compounds 1997;247:57.

DOI: 10.1016/s0925-8388(96)02595-9

Google Scholar

[25] M.J. Starink and A-M. Zahra, Acta Mater. 46, 3381 (1998). 10. H. Okamoto, J. Phase Equilibria 19, 598 (1998).

Google Scholar

[26] J.L. Murray, The Al-Mg (Aluminium-magnesium) System. Bulletin of Alloy Phase Diagrams 3:60, (1982).

Google Scholar

[27] Ragani J., Donnadieu P., Tassin C., ET AL.: High-temperature deformation of the c-Mg17Al12 complex metallic alloy,, Scr. Mater., 2011, 65, p.253–256.

DOI: 10.1016/j.scriptamat.2011.04.022

Google Scholar

[28] Wang L., Liu H.: The microstructural evolution of Al12Mg17 alloy during the quenching processes,, J. Non-Cryst. Solids, 2006, 352, p.2880–2884.

DOI: 10.1016/j.jnoncrysol.2006.02.090

Google Scholar

[29] Su H.L., Harmelin M., Donnadieu P., Beatzner C., Seifert H., Lukas H.L., Effenberg G., F. A. Experimental investigation of the Mg-Al phase diagram from 47 to 63 at.% Al. Journal of alloys and compounds 1997; p.247:57.

DOI: 10.1016/s0925-8388(96)02595-9

Google Scholar

[30] A. Calka, W. Kaczmarek, and J.S. Williams, J. Mater. Sci. 28, 15 (1993).

Google Scholar

[31] D.L. Zhang, T.B. Massalski, and M.R. Paruchuri, Metall. Mater. Trans. 25A, 73 (1994).

Google Scholar

[32] P. Villars and K. Cenzual, Pearaon'a Cryatal Data—Cryatal Structure Database for Inorganic Compounda (on CD-ROM), ASM International, Materials Park, Ohio, USA, (2009).

Google Scholar

[33] H. Perlitz: Nature (London) 154 (1944) 606.

Google Scholar

[34] A. Samson: Acta Crystallogr. 19 (1965) 401–413.

Google Scholar

[35] THESE Bertha Rocío VALDES LOPEZ, Etude de transformations de phases dans des alliages d'aluminium par la technique des couples de diffusion soutenue le 13 juillet 2006 P. 8.

Google Scholar

[36] M.I. Mendelev, M. Asta, M.J. Rahman & J.J. Hoyt (2009) Development of interatomic potentials appropriate for simulation of solid–liquid interface properties in Al–Mg alloys, Philosophical Magazine,89:34-36, 3269-3285.

DOI: 10.1080/14786430903260727

Google Scholar

[37] S. M. Foiles, M. I. Baskes, M. S. Daw, Phys. Rev. B, 33, (1986), 7983–7991.

Google Scholar

[38] M. I. Baskes, Phys. Rev. B 46, 2727 (1992).

Google Scholar

[39] M.J. Starink and A-M. Zahra, Acta Mater. 46, 3381 (1998). 10. H. Okamoto, J. Phase Equilibria 19, 598 (1998).

Google Scholar

[40] L. VERLET, Computer « experiments » on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev., 98, p.159 (1967).

DOI: 10.1103/physrev.159.98

Google Scholar

[41] L. VERLET, Computer « experiments » on classical fluids. II. Equilibrium correlation functions. Phys. Rev., 201, p.165 (1968).

DOI: 10.1103/physrev.165.201

Google Scholar

[42] Gibbs, Josiah Willard (1902). Elementary Principles in Statistical Mechanics. New York: Charles Scribner's Sons.

Google Scholar

[43] Posch, Harald A. (1986-01-01). Canonical dynamics of the Nosé oscillator: Stability, order, and chaos,. Physical Review A. 33 (6): 4253–4265.

DOI: 10.1103/physreva.33.4253

Google Scholar

[44] A. Stukowski Structure identification methods for atomistic simulations of crystalline materials Model. Simul. Mater. Sci. Eng., 20 (2012), p.045021.

DOI: 10.1088/0965-0393/20/4/045021

Google Scholar

[45] J.D. Honeycutt, H.C. Andersen Molecular dynamics study of melting and freezing of small Lennard-Jones clusters J. Phys. Chem., 91 (1987), pp.4950-4963.

DOI: 10.1021/j100303a014

Google Scholar

[46] J. Yarnell, M. Katz, R. Wenzel, S. Koenig, (1973). Structure Factor and Radial Distribution Function for Liquid Argon at 85 °K,. Physical Review A. 7 (6): 2130.

DOI: 10.1103/physreva.7.2130

Google Scholar

[47] Information on http://www.globalsino.com/EM/page3097.html.

Google Scholar

[48] C.C. Wang, C.H. Wong, Short-to-medium range order of Al–Mg metallic glasses studied by molecular dynamics simulations, Journal of Alloys and Compounds 509 (2011) 10222– 10229.

DOI: 10.1016/j.jallcom.2011.08.075

Google Scholar

[49] M. Feuerbacher, Carsten Thomas, Julien Makongo, S. Hoffman, Wilder Carillo-Cabrera, et al. The Samson phase, β-Mg2Al3, revisited. Zeitschrift für Kristallographie, De Gruyter, 2007, 222 (6).

Google Scholar

[50] F.W. Von Batchelder and R. F. Raeuchle, lattice constants and brillouin zone overlap in dilute magnesium alloys, physical review, volume 105, number 1, January 1, (1957).

DOI: 10.1103/physrev.105.59

Google Scholar

[51] ASTME 111, Standard Test Method for Young's Modulus, Tangent Modulus, and Chord Modulus,. Book of Standards Volume: 03.01.

DOI: 10.1520/e0111-04r10

Google Scholar

[52] Yin Wang, Philip B. Prangnell, The significance of intermetallic compounds formed during interdiffusion in aluminum and magnesium dissimilar welds, J. Materials Characterization 134 (2017) 84–95.

DOI: 10.1016/j.matchar.2017.09.040

Google Scholar

[53] Luping Long, Wensheng Liu, Yunzhu Ma*, Lei Wu and Siwei Tang, Evolution of Voids in Mg/Al Diffusion Bonding Process, High Temp. Mater. Proc. ; 36(10): 985–992, July 16, (2016).

DOI: 10.1515/htmp-2016-0024

Google Scholar

[54] Information on https://www.americanelements.com/aluminum-magnesium-alloy-12604-68-1.

Google Scholar

[55] Feng WANG, Shi-jie SUN, Bo YU, Feng ZHANG, Ping-li MAO, Zheng LIU, First principles investigation of binary intermetallics in Mg−Al−Ca−Sn alloy: Stability, electronic structures, elastic properties and thermodynamic properties, 2 July (2015).

DOI: 10.1016/s1003-6326(16)64107-9

Google Scholar

[56] H. Zhang, S. Shang, Y. Wang, A. Saengdeejing, L. Chen, Z. Liu, Acta Mater. 58 (2010) 4012–4018.

Google Scholar

[57] D. Zhou, J. Liu, S. Xu, P. Peng, Phys. B Condens. Matter 405B (2010) 2863–2868.

Google Scholar

[58] Information on Material property data-WEBQC, http://www.webqc.org/mmcalc.php.

Google Scholar