Experimental and Numerical Fracture Modeling Using XFEM of Aluminum Plates

Article Preview

Abstract:

In this paper a numerical modeling was carried out to study the problem of plane elasticity in a medium cracked by the method of the extended finite elements (XFEM) in a thin cracked plate made of aluminum using the software Abaqus 6.13.This method improved the capability of the classical finite element method especially the crack propagation problems. Furthermore, the extended finite elements method has been used to simulate tensile and fracture behavior of the study materials. Based on variation in size and shape of crack, the results obtained will be compared with those obtained experimentally, this comparison shows a good agreement.

You might also be interested in these eBooks

Info:

Pages:

45-52

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Hirsch, Recent development in aluminum for automotive applications, Trans. Nonferrous Metals Soc. China; 24(7) (2014) 1995–(2002).

Google Scholar

[2] K. Sadek, B. Aour, B. B. Bouiadjra, M. F. Bouanani, F. Khelil, Analysis of Crack Propagation by Bonded Composite for Different Patch Shapes Repairs in Marine Structures: A Numerical Analysis, Int. J. Eng. Res. Afr,35 (2018) 175-184.

DOI: 10.4028/www.scientific.net/jera.35.175

Google Scholar

[3] T.P Fries, T. Belytschko, The extended/generalized finite element method: An overview of the method and its applications. Int. J. Numer. Meth. Eng. 84(3) (2010) 253–304.

DOI: 10.1002/nme.2914

Google Scholar

[4] Y. Abdelaziz, A. Hamouine, A survey of the extended finite element. Comput Struct, 86(11) (2008) 1141–1151.

DOI: 10.1016/j.compstruc.2007.11.001

Google Scholar

[5] T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Meth. Eng, 45, (1999) 601–620.

DOI: 10.1002/(sici)1097-0207(19990620)45:5<601::aid-nme598>3.0.co;2-s

Google Scholar

[6] J. Melenk, J, I. Babuska, The partition of unity finite element method: Basic theory and application. Comput. Meth. Appl. Mech. Eng, 139, (1996) 289–314.

Google Scholar

[7] N, Sukumar, N. Moes, B. Moran, T. Belytschko, Extended finite elment method for three-dimesional crack modelling. . Int. J. Numer. Meth. En, 48, (2000) 1549–1570.

DOI: 10.1002/1097-0207(20000820)48:11<1549::aid-nme955>3.0.co;2-a

Google Scholar

[8] T. Rabczuk, T. Belytschko, A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng 196 (2007) 2777–2799.

DOI: 10.1016/j.cma.2006.06.020

Google Scholar

[9] T. Rabczuk, S. Bordas, G. Zi, On three-dimensional modeling of crack growth using partition of unity methods. Comput. Struct, 88 (2010) 1391–1411.

DOI: 10.1016/j.compstruc.2008.08.010

Google Scholar

[10] H. Pathak, A. Singh, I.V. Singh, S.K. Yadav, A simple and efficient XFEM approach for 3-D cracks simulations, Int. J. Fract, 181 (2013) 189-208.

DOI: 10.1007/s10704-013-9835-2

Google Scholar

[11] L. Wu, L.X. Zhang and Y.K. Guo, A Review of the Extended Finite Element for Fracture Analysis of Structures, Appl. Mech. Mat, 444-445 (2013) 96-102.

DOI: 10.4028/www.scientific.net/amm.444-445.96

Google Scholar

[12] M. Stolarska, D.L. Chopp, N. Moës, T. Belytschko, Modelling crack growth by level sets in the extended finite element method. Int. J. Numer. Methods. Eng. 51 (2001) 943–960.

DOI: 10.1002/nme.201

Google Scholar

[13] S. Osher, J. Sethian, Frints propagating with curvature-dependent speed:algorithms based on hamilton-jacobi formulations, J. Comput. Phys 79 (1988) 712–49.

DOI: 10.1016/0021-9991(88)90002-2

Google Scholar

[14] S. Osher, R. P. Fedkiw, Level set methods: An overview and some recent results. J. comput. phys,169 (2001) 463–502.

DOI: 10.1006/jcph.2000.6636

Google Scholar

[15] G. Ventura, On the elimination of quadrature subcells for discontinuous functions in the extended finite element method, Int. J. Numer. Methods Eng. 66 (2006) 761-95.

DOI: 10.1002/nme.1570

Google Scholar

[16] D. Holdych, D. Noble, R. Secor, Quadrature rules for triangular and tetrahedral elements with generalized functions, Int. J. Numer. Methods Eng. 73 (2008) 1310-27.

DOI: 10.1002/nme.2123

Google Scholar

[17] G. Ventura, R. Gracie, T. Belytschko, Fast integration and weight function blending in the extended finite element method, Int. J. Numer. Methods Eng. 77 (2009) 1-29.

DOI: 10.1002/nme.2387

Google Scholar

[18] S.E. Mousavi, N. Sukumar, Generalized Gaussian quadrature rules for discontinuities and crack singularities in the extended finite element method, Comput. Meth. Appl. Mech. Eng. 199 (2010) 3237-49.

DOI: 10.1016/j.cma.2010.06.031

Google Scholar

[19] D. Sutula, P. Kerfriden, T. Van Dam, S. P.A. Borda, Minimum energy multiple crack propagation. Part III: XFEM computer implementation and applications, Eng. Fract. Mecha. 191 (2018) 257–276.

DOI: 10.1016/j.engfracmech.2017.08.004

Google Scholar

[20] M. Malekan, Leandro L. Silva, Felicio B. Barros, Roque L.S. Pitangueira, Samuel S. Penna, Two-dimensional fracture modeling with the generalized/extended finite element method: An object-oriented programming approach, Adv. Eng. Softw. 115 (2018) 168–193.

DOI: 10.1016/j.advengsoft.2017.09.005

Google Scholar

[21] K. Agathos, G, Ventura, E, Chatzi, S. P. A. Bordas, Stable 3D XFEM/vector level sets for non-planar 3D crack propagation and comparison of enrichment schemes, Int. J. Numer. Methods Engrg. 113 (2018) 252–276.

DOI: 10.1002/nme.5611

Google Scholar

[22] ASTM Standard E8/E8M-13a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, (2013).

Google Scholar