[1]
UN-Habitat, world Habitat day 2014 –voice from shms background paper,(2014).
Google Scholar
[2]
S.Mandelli, J.Barbieri, L.Mattarolo, E.Colombo, Sustainable energy in Africa: A comprehensive data and policies review, Renewable and Sustainable Energy. 37 (2014) 656-686.
DOI: 10.1016/j.rser.2014.05.069
Google Scholar
[3]
R.Cantoni, M. Musso, L'énergie en afrique : les faits et les chiffres, Afrique contemporaine. 261-262 (2017) 9-23.
DOI: 10.3917/afco.261.0009
Google Scholar
[4]
HABITAT, ONU, L'ETAT DES VILLES AFRICAINES Réinventer la transition urbaine,(2014).
Google Scholar
[5]
Fact Sheet. The World Bank and Energy in Africa,2012. Information on https://goo.gl/JCuczP.
Google Scholar
[6]
GIEC, Changements climatiques 2007, Groupe de travail II: conséquences, adaptation et vulnérabilité, 2017. Information on https://goo.gl/SoT5KW.
Google Scholar
[7]
M.Kaboré, Enjeux de la simulation pour l'étude des performances énergétiques des bâtiments en Afrique sub-saharienne, (2015).
Google Scholar
[8]
IEA, world energy oultook <<energy access database >>, (2016).
Google Scholar
[9]
M. E.Khouna, Renewable Energy in West Africa. Country Chapter Mauritania. Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ) GmbH, Department Water, Energy and Transport, (2009).
Google Scholar
[10]
N.K. Dia, A.A. Bayod-Rújula, M. N'Dongo,M.Diallo, C.S.E Kane, B.Bilal, Energy context in Mauritania. Energy Sources, Part B: Economics, Planning, and Policy. 12:2 (2017) 182–190.
DOI: 10.1080/15567249.2015.1010021
Google Scholar
[11]
Renewable Energy and Energy Efficiency Partnership. Energy Statistics of Mauritania, 2008. Information on http://ww.reeep.org.
Google Scholar
[12]
Perspectives et potentiel du Secteur de l'Electricité. Table ronde pour la Mauritanie, Bruxelles, 2010. Information on http://www.renow.itccanarias.org/fr/.
Google Scholar
[13]
International energy agency <<africa energy outlook>>, (2014).
Google Scholar
[14]
Z. Zhou, C. Wang , X. Sun , F. Gao , W. Feng , G. Zillante, Heating energy saving potential from building envelope design and operation optimization in residential buildings: A case study in northern China, Journal of Cleaner Production. 174 (2018) 13-423.
DOI: 10.1016/j.jclepro.2017.10.237
Google Scholar
[15]
A. Lachheb, A. Allouhi, M. El Marhoune, R. Saadani, T. Kousksou, A. Jamil, M. Rahmoune, O. Oussouaddi, An Experimental Investigation on the Thermophysical Properties of a Composite Basis of Natural Fibers of Alfa, International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS. 17 (2017) 27-32.
DOI: 10.1016/j.jclepro.2018.11.140
Google Scholar
[16]
N.Dujardin, Un materiau biosource de choix : les fibers naturelles. caractérisations et applications, 25èmes Journées Scientifques de l'Environnement - L'économie verte en question (2014).
Google Scholar
[17]
Y Elhamdouni, A Khabbazi, C Benayad, S Mounir, A Dadi, Thermophysical and mechanical characterization of clay bricks reinforced by alfa or straw fibers, IOP Conference Series: Materials Science and Engineering. 186 (2017).
DOI: 10.1088/1757-899x/186/1/012035
Google Scholar
[18]
M. Bederina, L. Marmoret , K. Mezreb , M.M. Khenfer , A. Bali , M. Queneudec, Effect of the addition of wood shavings on thermal conductivity of sand concretes: Experimental study and modelling, Construction and Building Materials.21 (2007) 662–668.
DOI: 10.1016/j.conbuildmat.2005.12.008
Google Scholar
[19]
A. Laborel-Préneron, J.E. Aubert, C. Magniont, C. Tribout, A. Bertron, Plant aggregates and fibers in earth construction materials: A review, Construction and Building Materials. 111 (2016) 719–734.
DOI: 10.1016/j.conbuildmat.2016.02.119
Google Scholar
[20]
A. Lachheb, A. Allouhi, M. El Marhoune, R. Saadani, T. Kousksou, A. Jamil, M. Rahmoune, O. Oussouaddi, Thermal insulation improvement in construction materials by adding spent coffee grounds: An experimental and simulation study, Journal of Cleaner Production 209 (2019) 1411-1419.
DOI: 10.1016/j.jclepro.2018.11.140
Google Scholar
[21]
Y.Brouard, N.Belayachi, D.Hoxha, N.Ranganathan, S.Méo, Mechanical and hygrothermal behavior of clay – Sunflower (Helianthus annuus) and rape straw (Brassica napus) plaster bio-composites for building insulation, Construction and Building Materials.161 (2018)196–207.
DOI: 10.1016/j.conbuildmat.2017.11.140
Google Scholar
[22]
S.Bodian, M.Faye, N.A. Sene, V.Sambou, O.Limam, A.Thiam, Thermo-mechanical behavior of unfired bricks and fired bricks made from a mixture of clay soil and laterite, Journal of Building Engineering. 18 (2018) 172-179.
DOI: 10.1016/j.jobe.2018.03.014
Google Scholar
[23]
S.O.G. Osseni, B.D. Apovo, C.Ahouannou, E.A. Sanya et Y.Jannot, Caractérisation thermique des mortiers de ciment dopés en fibers de coco par la méthode du plan chaud asymétrique à une mesure de température, Afrique science. 12 (2016) 119-129.
Google Scholar
[24]
E.Ouedraogo, O.Coulibaly, A.Ouedraogo , A.Messan, Mechanical and Thermophysical Properties of Cement and/or Paper (Cellulose) Stabilized Compressed Clay Bricks, Journal of materials and engineering structures. 2 (2015) 68–76.
Google Scholar
[25]
M. Palumbo, F. McGregor, A. Heath , P. Walker, The influence of two crop by-products on the hygrothermal properties of earth plasters, Building and Environment. 105 (2016) 245-252.
DOI: 10.1016/j.buildenv.2016.06.004
Google Scholar
[26]
P. Meukam, Y. Jannot , A. Noumowe , T.C. Kofane, Y. J. Thermo physical characteristics of economical building materials, Construction and Building Materials. 18 (2004) 437–443.
DOI: 10.1016/j.conbuildmat.2004.03.010
Google Scholar
[27]
C. Hyon-Naudin. Etudes des filières matériaux de construction en terre et les équipements solaires. Genève : Organisation internationale du Travail, 2017 Information on https://www.ilo.org/.
Google Scholar
[28]
M.Hardy. Le secteur du bâtiment Mauritanien enjeux, orientations et potentiel de réforme Architectures et matériaux durables formations adaptées et emplois décents. Genève : Organisation internationale du Travail, 2017. Information on https://www.ilo.org/.
Google Scholar
[29]
Les villes et le changement climatique : orientations générales. Programme des Nations Unies pour le développement des établissements humains, 2011. Information on https://issuu.com/unhabitat/docs/les_villes_et_le_changement_climatique.
DOI: 10.1787/g2a35095-fr
Google Scholar
[30]
Bâtiments. Contribution au projet négociation climat pour toute l'Afrique réussie (NECTAR) 2009. Information on https://www.ifdd.francophonie.org/ressources/ressources-pub-desc.php?id=325.
Google Scholar
[31]
Profi l de la pauvreté en Mauritanie, 2014. Information on http://www.ons.mr.
Google Scholar
[32]
OMVS (Organisation pour la mise en valeur du fleuve sénégal), Rapport de synthèse du forum régional africain sur la contribution des projets FEM à la gestion des bassins transfrontaliers : cas du bassin du fleuve Sénégal, Projet de gestion des ressources en eau et de l'environnement du bassin du fleuve Sénégal, Dakar, (2006).
DOI: 10.1007/978-3-322-86673-8_106
Google Scholar
[33]
D. Sow, S. Gaye, M. Adj et D. Azilinon, Valorization of Agricultural Wastes by their Integration in Construction Materials:Application to Rice Straw. Proceeding of AMSE International Conference MS'09, Trivandrum, (2009) 314 ‐347.
Google Scholar
[34]
L.R. Misse. projet PNEEB / TYPHA « Transfert de technologie : Projet de production de matériaux d'isolation thermique à base de Typha.» Grenoble (2014).
Google Scholar
[35]
M.T. Diatta, S.Gaye, A.Thiam, D.Azilinon, Détermination des propriétés thermo-physique et mécanique du Typha Australis. Cong. SFT, Perpignan (2011).
Google Scholar
[36]
S. Gaye, G. Menguy, Transmission de chaleur: cours et problèmes. Édition CUT, Liban (2008).
Google Scholar
[37]
Y.Dieye, V.Sambou, M.Faye, A.Thiama, M.Adj,D.Azilinon, Thermo-mechanical characterization of a building material based on Typha. Journal of Building Engineering, 9 (2017) 142–146.
DOI: 10.1016/j.jobe.2016.12.007
Google Scholar
[38]
A.O. Abdelhakh, A..Saleh, M.Soultan, D.Sow, G.Menguy, S.Gaye, Improving Energy Efficiency of Buildings by using a Light Concrete based on the Typha australis. 3rd International Conference on Renewable Energies for Developing Countries (REDEC) (2016).
DOI: 10.1109/redec.2016.7577512
Google Scholar
[39]
I.Niang, C.Maalouf, T.Moussa,C.Bliard, E.Samin, C.Thomachot-Schneider, M.Lachi, H.Pron, T.H. Mai and S.Gaye, Hygrothermal performance of various Typha–clay composite. journals of building physics, (2018) 1-20.
DOI: 10.1177/1744259118759677
Google Scholar
[40]
R. Sana, J. Mounir, M. Slah, Study of Structure and Properties of Tunisian Typha Leaf Fibers. International Journal of Engineering Research & Technology (IJERT), (2014).
Google Scholar
[41]
K. Ramanaiah, A. V. Ratna Prasad, K. Hema Chandra Reddy, Mechanical Properties and Thermal Conductivity of Typha angustifolia Natural Fiber–Reinforced Polyester Composites. International Journal of Polymer Analysis and Characterization, 16 (2011) 496–503.
DOI: 10.1080/1023666x.2011.598528
Google Scholar
[42]
G.Wuzella, A.R. Mahendran , T.Bätge , S.Jury , A.Kandelbauer, Novel, binder-free fiber reinforced composites based on a renewable resource from the reed-like plant Typha sp. Industrial Crops and Products, 33 (2011) 683–689.
DOI: 10.1016/j.indcrop.2011.01.008
Google Scholar
[43]
J.Liu, Z.Zhang, Z.Yu, Y.Lianga, X.Lia, L.Rena, Experimental study and numerical simulation on the structural and mechanical properties of Typha leaves through multimodal microscopy approaches. Micron, 104 (2018) 37-44.
DOI: 10.1016/j.micron.2017.10.004
Google Scholar
[44]
J.Lima, P.Faria,. Eco-Efficient Earthen Plasters: The Influence of the Addition of Natural Fibers. Natural Fibers: Advances in Science and Technology Towards Industrial Applications,12 (2016) 315-327.
DOI: 10.1007/978-94-017-7515-1_24
Google Scholar
[45]
M.Maddison, T. Mauring, K.Kirsima, U. Mander, The humidity buffer capacity of clay–sand plaster filled with phytomass from treatment wetlands. Building and Environment, 44 (2009) 1864–1868.
DOI: 10.1016/j.buildenv.2008.12.008
Google Scholar