The Challenges of Local and Bio-Sourced Materials on Thermal Performance: Review, Classification and Opportunity

Article Preview

Abstract:

This paper reviews local and bio-sourced materials for construction through their thermomechanical characteristics, but with an emphasis on their thermal conductivity that allows us to assess the thermal performance (insulation) of these materials. Then, we discuss the energy problems in Mauritania, while highlighting the local and bio-sourced materials existing in this country. These materials could be an alternative to solve these energy problems. Finally, we focus on the thermal performance of Typha Australis, a plant that grows abundantly in fresh water mainly in Senegal and Mauritania, which would have good advantages over the thermal performance of the building.

You might also be interested in these eBooks

Info:

Pages:

85-101

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] UN-Habitat, world Habitat day 2014 –voice from shms background paper,(2014).

Google Scholar

[2] S.Mandelli, J.Barbieri, L.Mattarolo, E.Colombo, Sustainable energy in Africa: A comprehensive data and policies review, Renewable and Sustainable Energy. 37 (2014) 656-686.

DOI: 10.1016/j.rser.2014.05.069

Google Scholar

[3] R.Cantoni, M. Musso, L'énergie en afrique : les faits et les chiffres, Afrique contemporaine. 261-262 (2017) 9-23.

DOI: 10.3917/afco.261.0009

Google Scholar

[4] HABITAT, ONU, L'ETAT DES VILLES AFRICAINES Réinventer la transition urbaine,(2014).

Google Scholar

[5] Fact Sheet. The World Bank and Energy in Africa,2012. Information on https://goo.gl/JCuczP.

Google Scholar

[6] GIEC, Changements climatiques 2007, Groupe de travail II: conséquences, adaptation et vulnérabilité, 2017. Information on https://goo.gl/SoT5KW.

Google Scholar

[7] M.Kaboré, Enjeux de la simulation pour l'étude des performances énergétiques des bâtiments en Afrique sub-saharienne, (2015).

Google Scholar

[8] IEA, world energy oultook <<energy access database >>, (2016).

Google Scholar

[9] M. E.Khouna, Renewable Energy in West Africa. Country Chapter Mauritania. Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ) GmbH, Department Water, Energy and Transport, (2009).

Google Scholar

[10] N.K. Dia, A.A. Bayod-Rújula, M. N'Dongo,M.Diallo, C.S.E Kane, B.Bilal, Energy context in Mauritania. Energy Sources, Part B: Economics, Planning, and Policy. 12:2 (2017) 182–190.

DOI: 10.1080/15567249.2015.1010021

Google Scholar

[11] Renewable Energy and Energy Efficiency Partnership. Energy Statistics of Mauritania, 2008. Information on http://ww.reeep.org.

Google Scholar

[12] Perspectives et potentiel du Secteur de l'Electricité. Table ronde pour la Mauritanie, Bruxelles, 2010. Information on http://www.renow.itccanarias.org/fr/.

Google Scholar

[13] International energy agency <<africa energy outlook>>, (2014).

Google Scholar

[14] Z. Zhou, C. Wang , X. Sun , F. Gao , W. Feng , G. Zillante, Heating energy saving potential from building envelope design and operation optimization in residential buildings: A case study in northern China, Journal of Cleaner Production. 174 (2018) 13-423.

DOI: 10.1016/j.jclepro.2017.10.237

Google Scholar

[15] A. Lachheb, A. Allouhi, M. El Marhoune, R. Saadani, T. Kousksou, A. Jamil, M. Rahmoune, O. Oussouaddi, An Experimental Investigation on the Thermophysical Properties of a Composite Basis of Natural Fibers of Alfa, International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS. 17 (2017) 27-32.

DOI: 10.1016/j.jclepro.2018.11.140

Google Scholar

[16] N.Dujardin, Un materiau biosource de choix : les fibers naturelles. caractérisations et applications, 25èmes Journées Scientifques de l'Environnement - L'économie verte en question (2014).

Google Scholar

[17] Y Elhamdouni, A Khabbazi, C Benayad, S Mounir, A Dadi, Thermophysical and mechanical characterization of clay bricks reinforced by alfa or straw fibers, IOP Conference Series: Materials Science and Engineering. 186 (2017).

DOI: 10.1088/1757-899x/186/1/012035

Google Scholar

[18] M. Bederina, L. Marmoret , K. Mezreb , M.M. Khenfer , A. Bali , M. Queneudec, Effect of the addition of wood shavings on thermal conductivity of sand concretes: Experimental study and modelling, Construction and Building Materials.21 (2007) 662–668.

DOI: 10.1016/j.conbuildmat.2005.12.008

Google Scholar

[19] A. Laborel-Préneron, J.E. Aubert, C. Magniont, C. Tribout, A. Bertron, Plant aggregates and fibers in earth construction materials: A review, Construction and Building Materials. 111 (2016) 719–734.

DOI: 10.1016/j.conbuildmat.2016.02.119

Google Scholar

[20] A. Lachheb, A. Allouhi, M. El Marhoune, R. Saadani, T. Kousksou, A. Jamil, M. Rahmoune, O. Oussouaddi, Thermal insulation improvement in construction materials by adding spent coffee grounds: An experimental and simulation study, Journal of Cleaner Production 209 (2019) 1411-1419.

DOI: 10.1016/j.jclepro.2018.11.140

Google Scholar

[21] Y.Brouard, N.Belayachi, D.Hoxha, N.Ranganathan, S.Méo, Mechanical and hygrothermal behavior of clay – Sunflower (Helianthus annuus) and rape straw (Brassica napus) plaster bio-composites for building insulation, Construction and Building Materials.161 (2018)196–207.

DOI: 10.1016/j.conbuildmat.2017.11.140

Google Scholar

[22] S.Bodian, M.Faye, N.A. Sene, V.Sambou, O.Limam, A.Thiam, Thermo-mechanical behavior of unfired bricks and fired bricks made from a mixture of clay soil and laterite, Journal of Building Engineering. 18 (2018) 172-179.

DOI: 10.1016/j.jobe.2018.03.014

Google Scholar

[23] S.O.G. Osseni, B.D. Apovo, C.Ahouannou, E.A. Sanya et Y.Jannot, Caractérisation thermique des mortiers de ciment dopés en fibers de coco par la méthode du plan chaud asymétrique à une mesure de température, Afrique science. 12 (2016) 119-129.

Google Scholar

[24] E.Ouedraogo, O.Coulibaly, A.Ouedraogo , A.Messan, Mechanical and Thermophysical Properties of Cement and/or Paper (Cellulose) Stabilized Compressed Clay Bricks, Journal of materials and engineering structures. 2 (2015) 68–76.

Google Scholar

[25] M. Palumbo, F. McGregor, A. Heath , P. Walker, The influence of two crop by-products on the hygrothermal properties of earth plasters, Building and Environment. 105 (2016) 245-252.

DOI: 10.1016/j.buildenv.2016.06.004

Google Scholar

[26] P. Meukam, Y. Jannot , A. Noumowe , T.C. Kofane, Y. J. Thermo physical characteristics of economical building materials, Construction and Building Materials. 18 (2004) 437–443.

DOI: 10.1016/j.conbuildmat.2004.03.010

Google Scholar

[27] C. Hyon-Naudin. Etudes des filières matériaux de construction en terre et les équipements solaires. Genève : Organisation internationale du Travail, 2017 Information on https://www.ilo.org/.

Google Scholar

[28] M.Hardy. Le secteur du bâtiment Mauritanien enjeux, orientations et potentiel de réforme Architectures et matériaux durables formations adaptées et emplois décents. Genève : Organisation internationale du Travail, 2017. Information on https://www.ilo.org/.

Google Scholar

[29] Les villes et le changement climatique : orientations générales. Programme des Nations Unies pour le développement des établissements humains, 2011. Information on https://issuu.com/unhabitat/docs/les_villes_et_le_changement_climatique.

DOI: 10.1787/g2a35095-fr

Google Scholar

[30] Bâtiments. Contribution au projet négociation climat pour toute l'Afrique réussie (NECTAR) 2009. Information on https://www.ifdd.francophonie.org/ressources/ressources-pub-desc.php?id=325.

Google Scholar

[31] Profi l de la pauvreté en Mauritanie, 2014. Information on http://www.ons.mr.

Google Scholar

[32] OMVS (Organisation pour la mise en valeur du fleuve sénégal), Rapport de synthèse du forum régional africain sur la contribution des projets FEM à la gestion des bassins transfrontaliers : cas du bassin du fleuve Sénégal, Projet de gestion des ressources en eau et de l'environnement du bassin du fleuve Sénégal, Dakar, (2006).

DOI: 10.1007/978-3-322-86673-8_106

Google Scholar

[33] D. Sow, S. Gaye, M. Adj et D. Azilinon, Valorization of Agricultural Wastes by their Integration in Construction Materials:Application to Rice Straw. Proceeding of AMSE International Conference MS'09, Trivandrum, (2009) 314 ‐347.

Google Scholar

[34] L.R. Misse. projet PNEEB / TYPHA « Transfert de technologie : Projet de production de matériaux d'isolation thermique à base de Typha.» Grenoble (2014).

Google Scholar

[35] M.T. Diatta, S.Gaye, A.Thiam, D.Azilinon, Détermination des propriétés thermo-physique et mécanique du Typha Australis. Cong. SFT, Perpignan (2011).

Google Scholar

[36] S. Gaye, G. Menguy, Transmission de chaleur: cours et problèmes. Édition CUT, Liban (2008).

Google Scholar

[37] Y.Dieye, V.Sambou, M.Faye, A.Thiama, M.Adj,D.Azilinon, Thermo-mechanical characterization of a building material based on Typha. Journal of Building Engineering, 9 (2017) 142–146.

DOI: 10.1016/j.jobe.2016.12.007

Google Scholar

[38] A.O. Abdelhakh, A..Saleh, M.Soultan, D.Sow, G.Menguy, S.Gaye, Improving Energy Efficiency of Buildings by using a Light Concrete based on the Typha australis. 3rd International Conference on Renewable Energies for Developing Countries (REDEC) (2016).

DOI: 10.1109/redec.2016.7577512

Google Scholar

[39] I.Niang, C.Maalouf, T.Moussa,C.Bliard, E.Samin, C.Thomachot-Schneider, M.Lachi, H.Pron, T.H. Mai and S.Gaye, Hygrothermal performance of various Typha–clay composite. journals of building physics, (2018) 1-20.

DOI: 10.1177/1744259118759677

Google Scholar

[40] R. Sana, J. Mounir, M. Slah, Study of Structure and Properties of Tunisian Typha Leaf Fibers. International Journal of Engineering Research & Technology (IJERT), (2014).

Google Scholar

[41] K. Ramanaiah, A. V. Ratna Prasad, K. Hema Chandra Reddy, Mechanical Properties and Thermal Conductivity of Typha angustifolia Natural Fiber–Reinforced Polyester Composites. International Journal of Polymer Analysis and Characterization, 16 (2011) 496–503.

DOI: 10.1080/1023666x.2011.598528

Google Scholar

[42] G.Wuzella, A.R. Mahendran , T.Bätge , S.Jury , A.Kandelbauer, Novel, binder-free fiber reinforced composites based on a renewable resource from the reed-like plant Typha sp. Industrial Crops and Products, 33 (2011) 683–689.

DOI: 10.1016/j.indcrop.2011.01.008

Google Scholar

[43] J.Liu, Z.Zhang, Z.Yu, Y.Lianga, X.Lia, L.Rena, Experimental study and numerical simulation on the structural and mechanical properties of Typha leaves through multimodal microscopy approaches. Micron, 104 (2018) 37-44.

DOI: 10.1016/j.micron.2017.10.004

Google Scholar

[44] J.Lima, P.Faria,. Eco-Efficient Earthen Plasters: The Influence of the Addition of Natural Fibers. Natural Fibers: Advances in Science and Technology Towards Industrial Applications,12 (2016) 315-327.

DOI: 10.1007/978-94-017-7515-1_24

Google Scholar

[45] M.Maddison, T. Mauring, K.Kirsima, U. Mander, The humidity buffer capacity of clay–sand plaster filled with phytomass from treatment wetlands. Building and Environment, 44 (2009) 1864–1868.

DOI: 10.1016/j.buildenv.2008.12.008

Google Scholar