Comparative Characterisation of CNS/Epoxy and BN/Epoxy Nanodielectrics Using Electrical Tree PD Measurements and Atomic Force Microscopy

Article Preview

Abstract:

This paper contributes to the body of knowledge on the efforts to develop nanodielectrics as the next generation of insulation material. The time-to-failure under electrical tree-induced degradation of 1.09-1.35 vol.% hexagonal BN/Epoxy was found to be 3 times longer than in clean epoxy. For 0.31-0.33 vol.% CNS/Epoxy the time-to-failure was 24 times longer than the clean epoxy. The electrical treeing partial discharge behaviour in the BN/Epoxy and CNS/Epoxy showed distinct time-evolution characteristics different from those in the clean epoxy. The improved electrical tree endurance in BN/Epoxy relative to the clean epoxy can be attributed to increased mechanical stiffness. The superiority of the CNS/Epoxy as a nanodielectric is notable. The effect is suggested to be due to the electron affinity properties of the carbon nanospheres at appropriate dispersion levels.

You might also be interested in these eBooks

Info:

Pages:

24-37

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. E. Woods and F. W. Heinrichs, Cast epoxy insulation for high voltage switchgear and power transformers,, Electrical Insulation Conference Materials and Applications, Chicago, IL, USA, 1963, p.265–268.

DOI: 10.1109/eic.1963.7461803

Google Scholar

[2] H. Okubo, Enhancement of electrical insulation performance in power equipment based on dielectric material properties,, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 19, no. 3, p.733–754, Jun. (2012).

DOI: 10.1109/tdei.2012.6215076

Google Scholar

[3] C. W. Reed, Polymer Nanodielectrics - Basic Concepts,, IEEE Electrical Insulation Magazine, vol. 29, no. 6, p.12–15.

DOI: 10.1109/mei.2013.6648748

Google Scholar

[4] M. Xiao and B. D. Du, Review of high thermal conductivity polymer dielectrics for electrical insulation,, IET High Voltage, vol. 1, no. 1, p.34–42, Apr. (2016).

DOI: 10.1049/hve.2016.0008

Google Scholar

[5] X. Huang, Guest Editorial: Thermally conductive but electrically insulating materials for high voltage applications,, IET High Voltage, vol. 2, no. 3, p.137–138, Oct. (2017).

DOI: 10.1049/hve.2017.0134

Google Scholar

[6] J.-M. Park, D.-S. Kim, J.-R. Lee, and T.-W. Kim, Nondestructive damage sensitivity and reinforcing effect of carbon nanotube/epoxy composites using electro-micromechanical technique,, Materials Science and Engineering: C, vol. 23, no. 6–8, p.971–975, Dec. (2003).

DOI: 10.1016/j.msec.2003.09.131

Google Scholar

[7] M. Monti, M. Rallini, D. Puglia, L. Peponi, L. Torre, and J. M. Kenny, Morphology and electrical properties of graphene–epoxy nanocomposites obtained by different solvent assisted processing methods,, Composites Part A: Applied Science and Manufacturing, vol. 46, p.166–172, Mar. (2013).

DOI: 10.1016/j.compositesa.2012.11.005

Google Scholar

[8] S. Nakamura, K. Kitagawa, and G. Sawa, Dielectric properties of carbon black-epoxy resin composites in high frequency range,, Proceedings of the 4th International Conference on Conduction and Breakdown in Solid Dielectrics, Sestri Levante, Italy, 1992, p.97–101.

DOI: 10.1109/icsd.1992.224968

Google Scholar

[9] L. Yue, G. Pircheraghi, S. A. Monemian, and I. Manas-Zloczower, Epoxy composites with carbon nanotubes and graphene nanoplatelets – Dispersion and synergy effects,, Carbon, vol. 78, p.268–278, Nov. (2014).

DOI: 10.1016/j.carbon.2014.07.003

Google Scholar

[10] P.C. Ma, Mi.Y. Liu, H. Zhang, S.Q. Wang, R.Wang, K. Wang, Y. K. Wong, B. Z. Tang, S. H. Hong, K.W. Paik and J. K. Kim, Enhanced Electrical Conductivity of Nanocomposites Containing Hybrid Fillers of Carbon Nanotubes and Carbon Black,, ACS Applied Materials & Interfaces, vol. 1, no. 5, p.1090–1096, May (2009).

DOI: 10.1021/am9000503

Google Scholar

[11] A. Y. Watson and P. A. Valberg, Carbon Black and Soot: Two Different Substances,, AIHAJ - American Industrial Hygiene Association, vol. 62, no. 2, p.218–228, Mar. (2001).

DOI: 10.1080/15298660108984625

Google Scholar

[12] K. S. Bolouri and J. Amouroux, Reactor design and energy concepts for a plasma process of acetylene black production,, Plasma Chemistry and Plasma Processing, vol. 6, no. 4, p.335–348, Dec. (1986).

DOI: 10.1007/bf00565549

Google Scholar

[13] J.B. Donnet, R. C. Bansal, and J. W. Wang, Carbon Black: Science and Technology, Second Edition, Marcel Dekker Inc., United States of America, (1993).

Google Scholar

[14] D. Pantea, H. Darmstadt, S. Kaliaguine, and C. Roy, Heat-treatment of carbon blacks obtained by pyrolysis of used tires. Effect on the surface chemistry, porosity and electrical conductivity,, Journal of Analytical and Applied Pyrolysis, vol. 67, no. 1, p.55–76, Mar. (2003).

DOI: 10.1016/s0165-2370(02)00017-7

Google Scholar

[15] M. S. Dresselhaus and M. Terrones, Carbon-Based Nanomaterials From a Historical Perspective,, Proceedings of the IEEE, vol. 101, no. 7, p.1522–1535, Jul. (2013).

DOI: 10.1109/jproc.2013.2261271

Google Scholar

[16] Z. C. Kang and Z. L. Wang, Chemical activities of graphitic carbon spheres,, Journal of Molecular Catalysis A: Chemical, vol. 118, no. 2, p.215–222, Apr. (1997).

DOI: 10.1016/s1381-1169(96)00393-7

Google Scholar

[17] A. A. Deshmukh, S. D. Mhlanga, and N. J. Coville, Carbon spheres,, Materials Science and Engineering, vol. 70, no. 1–2, p.1–28, Sep. (2010).

DOI: 10.1016/j.mser.2010.06.017

Google Scholar

[18] B. K. Mutuma, B. J. Matsoso, K. Ranganathan, J. M. Keartland, D. Wamwangi, and N. J. Coville, Generation of radical species in CVD grown pristine and N-doped solid carbon spheres using H2 and Ar as carrier gases,, Royal Society of Chemistry Advances, vol. 7, no. 34, p.21187–21195, (2017).

DOI: 10.1039/c7ra03142d

Google Scholar

[19] M. Jarvid, A. Johansson, R. Kroon, J. M. Bjuggren, H. Wutzel, V. Englund, S. Gubanski, M. R. Andersson and C. Müller, A New Application Area for Fullerenes: Voltage Stabilizers for Power Cable Insulation,, Advanced Materials, vol. 27, no. 5, p.897–902, Feb. (2015).

DOI: 10.1002/adma.201404306

Google Scholar

[20] A. C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects,, Solid State Communications, vol. 143, no. 1–2, p.47–57, Jul. (2007).

DOI: 10.1016/j.ssc.2007.03.052

Google Scholar

[21] C. Nyamupangedengu and D. R. Cornish, Time-evolution phenomena of electrical tree partial discharges in Magnesia, Silica and Alumina epoxy nanocomposites,, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 23, no. 1, p.85–94, Feb. (2016).

DOI: 10.1109/tdei.2015.005055

Google Scholar

[22] M. Reading and A. Vaughan, Rheological, Thermal and Electrical Properties of Poly(Ethylene Oxide)/Silicon Dioxide Microcomposites,, in 16th International Symposium on High Voltage Engineering (ISH), Cape Town, South Africa, (2009).

Google Scholar

[23] A. M. Hank, D. R. Cornish, C. Nyamupangedengu, and I. Sigalas, Quantifying Nanoparticle Dispersion Using Rheological Techniques in Epoxy Resin,, in The 19th International Symposium on High Voltage Engineering, Pilsen, Czech Republic, (2016).

Google Scholar

[24] A. M. Hank, C. Nyamupangedengu, and I. Sigalas, Developing reproducible electrical tree-resistant epoxy nanodielectrics with improved thermal performance,, Cigre Science & Engineering, vol. 11, no. 4, p.44–51, Jun. (2018).

Google Scholar

[25] M. Roy et al., Polymer nanocomposite dielectrics - the role of the interface,, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 12, no. 4, p.629–643, Aug. (2005).

DOI: 10.1109/tdei.2005.1511089

Google Scholar

[26] J. Seiler and J. Kindersberger, Evidence of the interphase in epoxy nanocomposites,, International Conference on High Voltage Engineering and Application (ICHVE), 2014, pp.1-4.

DOI: 10.1109/ichve.2014.7035442

Google Scholar

[27] A. M. Hank and C. Nyamupangedengu, A comparative study of AC and DC breakdown characteristics with dielectric spectroscopy of Hexagonal Boron Nitride and Carbon Nanosphere Epoxy Nanodielectrics,, Proceedings of the Cigre 2018 Paris Session, Paris, France, vol. 47, pp. D1-204.

Google Scholar

[28] A. M. Hank and C. Nyamupangedengu, Electrical Tree profiling in solid nanodielectrics using Atomic Force Microscopy,, Southern Africa Universities Power Engineering Conference (SAUPEC), Stellenbosh, South Africa, 2017, vol. 25, p.147–152.

Google Scholar

[29] A. Sridhar and M. Joy Thomas, Electrical treeing in polyethylene: effect of nano fillers on tree inception and growth,, International Conference on High Voltage Engineering and Application, New Orleans, Los Angeles, United States of America, 2010, p.576–579.

DOI: 10.1109/ichve.2010.5640769

Google Scholar

[30] L. Zhang, Y. Zhou, M. Huang, Y. Sha, J. Tian, and Q. Ye, Effect of nanoparticle surface modification on charge transport characteristics in XLPE/SiO2 nanocomposites,, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 21, no. 2, p.424–433, Apr. (2014).

DOI: 10.1109/tdei.2013.004145

Google Scholar

[31] I. Iddrissu, S. M. Rowland, H. Zheng, Z. Lv, and R. Schurch, Electrical tree growth and partial discharge in epoxy resin under combined AC and DC voltage waveforms,, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 25, no. 6, p.2183–2190, Dec. (2018).

DOI: 10.1109/tdei.2018.007310

Google Scholar

[32] M. G. Danikas and T. Tanaka, Nanocomposites-a review of electrical treeing and breakdown,, IEEE Electrical Insulation Magazine, vol. 25, no. 4, p.19–25, Jul. (2009).

DOI: 10.1109/mei.2009.5191413

Google Scholar

[33] S. Alapati and M. J. Thomas, Electrical treeing and the associated PD characteristics in LDPE nanocomposites,, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 19, no. 2, p.697–704, Apr. (2012).

DOI: 10.1109/tdei.2012.6180265

Google Scholar

[34] S. Li et al., Short-term breakdown and long-term failure in nanodielectrics: a review,, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 17, no. 5, p.1523–1535, Oct. (2010).

DOI: 10.1109/tdei.2010.5595554

Google Scholar