[1]
A. K. Abdul Hakeem, N. Vishnu Ganesh and B. Ganga, Effect of heat radiation in a Walter's liquid B fluid over a stretching sheet with non-uniform heat source/sink and elastic deformation. J. King Saud Univ. 26 (2014) 168–175.
DOI: 10.1016/j.jksues.2013.05.006
Google Scholar
[2]
A. Majeed, T. Javed and S. Shami, Numerical analysis of Walters-B fluid flow and heat transfer over a stretching cylinder, Can. J. Phys. 94 (5) (2016) 522-530.
DOI: 10.1139/cjp-2015-0511
Google Scholar
[3]
A. Hussain and A. Ullah, Boundary layer flow of a Walter's B fluid due to a stretching cylinder with temperature dependent viscosity, Alex. Eng. J. 55 (2016) 3073-3080.
DOI: 10.1016/j.aej.2016.07.037
Google Scholar
[4]
P. G. Siddheshwar, U. S. Mahabaleshwar and A. Chan., MHD flow of Walter's liquid B over a nonlinearly stretching sheet, Int. J. App. Mech. Eng. 20(3) (2015) 589-603.
DOI: 10.1515/ijame-2015-0038
Google Scholar
[5]
O. D. Makinde, M. Gnaneswara Reddy, K. Venugopal Reddy, Effects of thermal radiation on MHD peristaltic motion of Walters-B fluid with heat source and slip conditions, Journal of Applied Fluid Mechanics, 10(4) (2017) 1105-1112.
DOI: 10.18869/acadpub.jafm.73.241.27082
Google Scholar
[6]
I. Ullah, S. Shafie, O. D. Makinde, I. Khan, Unsteady MHD Falkner-Skan flow of Casson nanofluid with generative/destructive chemical reaction, Chemical Engineering Science, 172 (2017) 694–706.
DOI: 10.1016/j.ces.2017.07.011
Google Scholar
[7]
P. Sharma and R. Saboo, Heat and mass transfer in free convective flow of Walter's liquid model-B through rotating vertical channel, App. Math. Sci. 11 (2017) 1651-1659.
DOI: 10.12988/ams.2017.74144
Google Scholar
[8]
T. Hayat, Anum Shafiq, A. Alsaedi and S. Asghar, Effect of inclined magnetic field in flow of third grade fluid with variable thermal conductivity, AIP ADV. 5 (8) (2015) 087108-15.
DOI: 10.1063/1.4928321
Google Scholar
[9]
O.D. Makinde, MHD mixed-convection interaction with thermal radiation and nth order chemical reaction past a vertical porous plate embedded in a porous medium, Chemical Engineering Communications, 198 (4) (2011) 590-608.
DOI: 10.1080/00986445.2010.500151
Google Scholar
[10]
P. M. Krishna, N. Sandeep, R. P. Sharma, O.D. Makinde, Thermal radiation effect on 3D slip motion of AlCu-Water and Cu-Water nanofluids over a variable thickness stretched surface, Defect and Diffusion Forum, 377 (2017) 141-154.
DOI: 10.4028/www.scientific.net/ddf.377.141
Google Scholar
[11]
M. K. Nayak, Chemical reaction effect on MHD viscoelastic fluid over a stretching sheet through porous medium, Meccanica 51 (2016) 1699-1711.
DOI: 10.1007/s11012-015-0329-3
Google Scholar
[12]
M.K. Nayak, MHD 3D flow and heat transfer analysis of nanofluid by shrinking surface inspired by thermal radiation and viscous dissipation, Int. J. Mech. Sci. 124 (2017) 185-193.
DOI: 10.1016/j.ijmecsci.2017.03.014
Google Scholar
[13]
M. M. Nandeppanavar, M. Subhas Abel and J. Tawade, Heat transfer in a Walter's liquid B fluid over an impermeable stretching sheet with non-uniform heat source/sink and elastic deformation, Comm. Nonlinear. Sci. Numer. Simulat 15 (2010) 1791–1802.
DOI: 10.1016/j.cnsns.2009.07.009
Google Scholar
[14]
A. Gizachew and B. Shankar, MHD flow of non-Newtonian viscoelastic fluid on stretching sheet with the effect of slip velocity, Int. J. Eng. Manu. Sci. 8(1) (2018) 1-14.
Google Scholar
[15]
O.D. Makinde, A. Ogulu, The effect of thermal radiation on the heat and mass transfer flow of a variable viscosity fluid past a vertical porous plate permeated by a transverse magnetic field, Chem. Eng. Commn. 195 (12) (2008) 1575–1584.
DOI: 10.1080/00986440802115549
Google Scholar
[16]
M. Turkyilmazoglu, Analytic heat and mass transfer of the mixed hydrodynamic thermal slip MHD viscous flow over a stretching sheet. Int. J. Mech. Sci. 53 (2011) 886-896.
DOI: 10.1016/j.ijmecsci.2011.07.012
Google Scholar
[17]
M.K. Nayak, G.C. Dash, L.P. Singh, Steady MHD flow and heat transfer of a third grade fluid in wire coating analysis with temperature dependent viscosity, Int. J. Heat Mass Transf. 79 (2014) 1087–1095.
DOI: 10.1016/j.ijheatmasstransfer.2014.08.057
Google Scholar