Unknown Road Profile Input Estimation with Two Levels of Complexity Models

Article Preview

Abstract:

Most advanced driver assistance systems (ADAS) are intended to improve ride comfort for vehicle suspension systems. A new road estimation method is proposed as a means of observing the road profile level. To achieve this, two complexity levels (quarter car and half car models) are presented and developed in Matlab to analyze the vertical vibration of a vehicle. The unknown input observers are then designed for observing unknown states and road profile level. The necessary measurements are the accelerations of the centers of the wheels. The results of simulations conducted with random road excitation show successfully simulated experimentations of the method using a realistic simulator as well as its robustness.

You might also be interested in these eBooks

Info:

Pages:

113-130

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bosch. Driving-safety Systems - Second Edition. Robert Bosch GmbH, Stuttgart, (1999).

Google Scholar

[2] J. A. Tamboli and S. G. Joshi. Optimum design of a passive suspension system of a vehicle subjected to actual random road excitations. Journal of sound and vibration, 219:193–205, (1999).

DOI: 10.1006/jsvi.1998.1882

Google Scholar

[3] O. Kropac and P. Mucka. Be careful when using the international roughness index as an indica-tor of road uneveness. Journal of sound and vibration, 287:989–1003, (2005).

DOI: 10.1016/j.jsv.2005.02.015

Google Scholar

[4] M. Rozyn and N. Zhang. A method for estimation of vehicle inertial paramrters. Vehicle system dynamics, 48(5):547–565, (2010).

DOI: 10.1080/00423110902939863

Google Scholar

[5] S. Chantranuwathana and H. Huei Peng. Adaptive robust force control for vehicle active sus-pensions. International Journal of Adaptive Control and Signal Processing, (2004).

DOI: 10.1002/acs.783

Google Scholar

[6] N. Yagiz and Y. Hacioglu. Backstepping control of a vehicle with active suspensions. Control Engineering Practice, 16:1457–1467, (2008).

DOI: 10.1016/j.conengprac.2008.04.003

Google Scholar

[7] Sergio Savaresi, Charles Poussot Vassal, Cristiano Spelta, Olivier Sename, and Luc Dugard. Semi-active suspension control design for vehicles. Elsevier, 08 2010. ISBN 0-08-096678-6.

DOI: 10.1016/b978-0-08-096678-6.00019-5

Google Scholar

[8] H. Imine, N.K. M'Sirdi, and Y. Delanne. Sliding-mode observers for systems with unknown inputs: application to estimating the road profile. Journal of Automotive Engineers, 219, (2005).

DOI: 10.1243/095440705x34658

Google Scholar

[9] M. Doumiati, J. Martinez Molina, L Sename, O.and Dugard, and D Lechner. Road profile esti-mation using an adaptive youla- kucera parametric observer:comparison to real profilers. Control Engineering Practice, 2016, (2016).

DOI: 10.1016/j.conengprac.2015.12.020

Google Scholar

[10] A. Arat, M, S. Taheri, and E. Holweg. road profile estimation for active suspension applica-tions,,. SAE Int.J. Passeng. Cars - Mech. Syst., 8(2):492–500, (2015).

DOI: 10.4271/2015-01-0651

Google Scholar

[11] Hocine Imine. Observation d'´etats d'un v´ehicule pour l'eestimation du profil des les traces de roulement. PhD thesis, Universite´ de Versailles-Saint-Quentin-en-Yvelines, D´ecembre (2003).

Google Scholar

[12] D. Prattichizzo, P. Marcorelli, A. Bicchi, and A. Vicino. Geometric disturbance decoupling con-trol of vehicules with active suspensions. In IEEE International conference on Control Applica-tions, Trieste, Italy, pages 253–257, september (1998).

DOI: 10.1109/cca.1998.728386

Google Scholar

[13] C. Wang and T. Lee. Nonlinear dynamic analysis of bi-directional porous aero-thrust bearing systems. Advances in Mechanical Engineeringl, 9(.

DOI: 10.1177/1687814017738153

Google Scholar

[14] C. Wang, L. Rong-Ma, h. Yau, and T. Lee. Nonlinear analysis and simulation of active hybrid aerodynamic and aerostatic bearing system. Journal of Low Frequency Noise Vibration and Active Control, (3-4):1404–1421, August (2018).

DOI: 10.1177/1461348418792737

Google Scholar

[15] Y .and Chunxiang W. Liang, L .and Ming and W. Bing. road dna based localization for au-tonomous vehicles,,. in IEEE Intelligent Vehicles Symposium,, pages 883–888., (2016).

DOI: 10.1109/ivs.2016.7535492

Google Scholar

[16] D. Fischer and R. Isermann. Mechatronic semi-active and active vehicle suspension. Control Engineering Practice, 12:1353–1367, (2004).

DOI: 10.1016/j.conengprac.2003.08.003

Google Scholar

[17] G. Koch, O. Fritsch, and B. Lohmann. Potential of low bandwidth active suspension control with continuously variable damper. Control Engineering Practice, 18:1251–1262, (2010).

DOI: 10.1016/j.conengprac.2010.03.007

Google Scholar

[18] J.-H. Lin and C.-J. Huang. Nonlinear backstepping active suspension design applied to a half-car model. Vehicle system dynamics, 42(6):373–393, (2004).

DOI: 10.1080/0042311042000266784

Google Scholar

[19] H.P. Du, N. Zhang, and J. Lam. Parameter-dependent input-delayed control of uncertain vehicle suspensions. Journal of Sound and Vibration, 317:537–556, (2008).

DOI: 10.1016/j.jsv.2008.03.066

Google Scholar

[20] M. Boutayeb, M. Darouach, and H. Rafaralahy. Generalized state-space observers for chaotic synchronization and secure communication. IEEE Trans. on Circuits and Systems, 49, (2002).

DOI: 10.1109/81.989169

Google Scholar

[21] Fenglong Liu. Synth`ese d'observateurs entr´ees inconnues pour les syst`emes non lin ´eaires. doctorat de l'universite´ de basse-normandie, Universite´ de Basse-Normandie, d ´ecembre (2007).

Google Scholar

[22] A. Hassibi, J. How, and S. Boyd. A path-following method for solving bmi problems in control. American Control Conference,San Diego, California, 2:1385–1389, (1999).

Google Scholar

[23] Damien Sammier. Sur la mod´elisation et la commande des suspensions des v´ehicules automo-biles. PhD thesis, Institut National Polytechnique de Grenoble (INPG), Novembre (2001).

Google Scholar

[24] M.C. Smith and F.C. Wang. Controller parametrisation for disturbance response decoupling: Application to vehicle active suspension control. IEEE Transactions on Control Systems Tech-nology, 10(3):393–407, (2002).

DOI: 10.1109/87.998029

Google Scholar

[25] D. Maquin and J. Gaddouna, B.and Ragot. Estimation of unknown inputs in linear systems. American Control Conference, 1:1195–1197, (1994).

DOI: 10.1109/acc.1994.751939

Google Scholar

[26] A. Stotsky and I. Kolmanovsky. Simple unknown input estimation techniques for automotive applications. American Control Conference, pages 3312–3317, (2001).

DOI: 10.1109/acc.2001.946139

Google Scholar

[27] F E Saber, M Ouahi, and A Saka. Unknown-input observer for vehicle lateral dynamics using new sensor force technology. International Journal of Vehicle Systems Modelling and Testing (IJVSMT), 13:199–222, 08 (2019).

DOI: 10.1504/ijvsmt.2019.101542

Google Scholar

[28] F E Saber, M Ouahi, and A Saka. Estimation of steering wheel angle and vehicle lateral state from measured lateral forces. International Journal of Engineering Research in Africa, 39:14–31, 12 (2018).

DOI: 10.4028/www.scientific.net/jera.39.14

Google Scholar

[29] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan. Linear ma-trix inequalities in system and control theory. studies in applied mathematics. SIAM, Philadel-phia, PA, (1994).

DOI: 10.1137/1.9781611970777

Google Scholar

[30] D. Lechner, Y. Delanne, G. Schaefer, and V. Schmitt. M´ethodologie de validation du logiciel de dynamique automobile callas. Ing´enieurs de l'automobile, 9(713):10–38, (1997).

Google Scholar

[31] P. G. Adamopoulos. Road Roughness and Dynamic Response of Road Vehicules. PhD thesis, Institute of Sound and Vibration Research University of Southampton, June (1988).

Google Scholar