[1]
H.W. Lee, W.T. Kwon, Determination of the minute range for RSM to select the optimum cutting conditions during turning on CNC lathe. Journal of Mechanical Science and Technology, 24 (2010) 1637-1645.
DOI: 10.1007/s12206-010-0520-3
Google Scholar
[2]
S. Saini, I.S. Ahuja, V.S. Sharma, Influence of cutting parameters on tool wear and surface roughness in hard turning of AISI H11 tool steel using ceramic tools. International Journal of Precision Engineering and Manufacturing, 13 (2012) 1295-1302.
DOI: 10.1007/s12541-012-0172-6
Google Scholar
[3]
A.V. Pradeep, D. Linga Raju, S. Ramakrishna, Cutting force analysis in hard turning of AISI 52100 steel using multi-layer coated carbide inserts-RSM approach. Materials Today: Proceedings, (2019).
DOI: 10.1016/j.matpr.2019.07.369
Google Scholar
[4]
S. Dahbi, L. Ezzine, H. El Moussami, Modeling of Cutting Performances in Turning Process Using Multiple Regression Method. International Journal of Engineering Research in Africa, 29 (2017) 54-69.
DOI: 10.4028/www.scientific.net/jera.29.54
Google Scholar
[5]
Y.-J. Choi, S.-K. Lee, I.-K. Lee, Y.-J. Cho, J.-W. Lee, J.-W. Cho, M.-S. Jeong, Multi-stage forging process design of steering system output shaft for reduction of energy consumption. International Journal of Precision Engineering and Manufacturing, 16 (2015) 1455-1460.
DOI: 10.1007/s12541-015-0192-0
Google Scholar
[6]
S.-W. Kim, Y.-S. Lee, D.-W. Jang, J. Choi, S.-B. Lee, Fatigue life evaluation of pinion gears for the reliability of pitch systems in wind turbines. Journal of Mechanical Science and Technology, 31 (2017) 753-758.
DOI: 10.1007/s12206-017-0126-0
Google Scholar
[7]
C. Han, J.-h. Lee, Y.S. Choi, S.-H. Park, S. Park, Methods of Improving Mechanical Integrity of Center-Link Chains for a Trolley Conveyor System. International Journal of Precision Engineering and Manufacturing, 20 (2019) 301-312.
DOI: 10.1007/s12541-019-00016-0
Google Scholar
[8]
K. Horikawa, N. Ando, H. Kobayashi, W. Urushihara, Visualization of hydrogen gas evolution during deformation and fracture in SCM 440 steel with different tempering conditions. Materials Science and Engineering: A, 534 (2012) 495-503.
DOI: 10.1016/j.msea.2011.11.098
Google Scholar
[9]
K.V. Shalnov, V.K. Kukhta, K. Uemura, Y. Ito, Applications of combined ion implantation for improved tribological performance. Surface and Coatings Technology, 206 (2011) 849-853.
DOI: 10.1016/j.surfcoat.2011.03.105
Google Scholar
[10]
A. Saha, H. Majumder, Multi Criteria Selection of Optimal Machining Parameter in Turning Operation Using Comprehensive Grey Complex Proportional Assessment Method for ASTM A36. International Journal of Engineering Research in Africa, 23 (2016) 24-32.
DOI: 10.4028/www.scientific.net/jera.23.24
Google Scholar
[11]
H. Aouici, M.A. Yallese, K. Chaoui, T. Mabrouki, J.-F. Rigal, Analysis of surface roughness and cutting force components in hard turning with CBN tool: Prediction model and cutting conditions optimization. Measurement, 45 (2012) 344-353.
DOI: 10.1016/j.measurement.2011.11.011
Google Scholar
[12]
K. Bouacha, M.A. Yallese, T. Mabrouki, J.-F. Rigal, Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool. International Journal of Refractory Metals and Hard Materials, 28 (2010) 349-361.
DOI: 10.1016/j.ijrmhm.2009.11.011
Google Scholar
[13]
S. Chinchanikar, S.K. Choudhury, Effect of work material hardness and cutting parameters on performance of coated carbide tool when turning hardened steel: An optimization approach. Measurement, 46 (2013) 1572-1584.
DOI: 10.1016/j.measurement.2012.11.032
Google Scholar
[14]
M. Munawar, J.C.-S. Chen, N.A. Mufti, Investigation of cutting parameters effect for minimization of sur face roughness in internal turning. International Journal of Precision Engineering and Manufacturing, 12 (2011) 121-127.
DOI: 10.1007/s12541-011-0015-x
Google Scholar
[15]
A. Batish, A. Bhattacharya, M. Kaur, M.S. Cheema, Hard turning: Parametric optimization using genetic algorithm for rough/finish machining and study of surface morphology. Journal of Mechanical Science and Technology, 28 (2014) 1629-1640.
DOI: 10.1007/s12206-014-0308-y
Google Scholar
[16]
M. Belmonte, P. Ferro, A.J.S. Fernandes, F.M. Costa, J. Sacramento, R.F. Silva, Wear resistant CVD diamond tools for turning of sintered hardmetals. Diamond and Related Materials, 12 (2003) 738-743.
DOI: 10.1016/s0925-9635(02)00302-3
Google Scholar
[17]
L.A. Dobrzański, D. Pakuła, Comparison of the structure and properties of the PVD and CVD coatings deposited on nitride tool ceramics. Journal of Materials Processing Technology, 164-165 (2005) 832-842.
DOI: 10.1016/j.jmatprotec.2005.02.094
Google Scholar
[18]
S. Chinchanikar, S.K. Choudhury, Investigations on machinability aspects of hardened AISI 4340 steel at different levels of hardness using coated carbide tools. International Journal of Refractory Metals and Hard Materials, 38 (2013) 124-133.
DOI: 10.1016/j.ijrmhm.2013.01.013
Google Scholar
[19]
G.K. Dosbaeva, M.A. El Hakim, M.A. Shalaby, J.E. Krzanowski, S.C. Veldhuis, Cutting temperature effect on PCBN and CVD coated carbide tools in hard turning of D2 tool steel. International Journal of Refractory Metals and Hard Materials, 50 (2015) 1-8.
DOI: 10.1016/j.ijrmhm.2014.11.001
Google Scholar
[20]
Q. Liang, Y.K. Vohra, R. Thompson, High speed continuous and interrupted dry turning of A390 Aluminum/Silicon Alloy using nanostructured diamond coated WC–6 wt.% cobalt tool inserts by MPCVD. Diamond and Related Materials, 17 (2008) 2041-2047.
DOI: 10.1016/j.diamond.2008.06.008
Google Scholar
[21]
M. Belmonte, F.J. Oliveira, J. Sacramento, A.J.S. Fernandes, R.F. Silva, Cutting forces evolution with tool wear in sintered hardmetal turning with CVD diamond. Diamond and Related Materials, 13 (2004) 843-847.
DOI: 10.1016/j.diamond.2003.11.018
Google Scholar
[22]
D.I. Lalwani, N.K. Mehta, P.K. Jain, Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel. Journal of Materials Processing Technology, 206 (2008) 167-179.
DOI: 10.1016/j.jmatprotec.2007.12.018
Google Scholar
[23]
O.O. Daramola, I. Tlhabadira, J.L. Olajide, I.A. Daniyan, E.R. Sadiku, L. Masu, L.R. VanStaden, Process Design for Optimal Minimization of Resultant Cutting Force during the Machining of Ti-6Al-4V: Response Surface Method and Desirability Function Analysis. Procedia CIRP, 84 (2019) 854-860.
DOI: 10.1016/j.procir.2019.04.185
Google Scholar
[24]
L. Qian, M.R. Hossan, Effect on cutting force in turning hardened tool steels with cubic boron nitride inserts. Journal of Materials Processing Technology, 191 (2007) 274-278.
DOI: 10.1016/j.jmatprotec.2007.03.022
Google Scholar
[25]
S. Yousefi, M. Zohoor, Effect of cutting parameters on the dimensional accuracy and surface finish in the hard turning of MDN250 steel with cubic boron nitride tool, for developing a knowledged base expert system. International Journal of Mechanical and Materials Engineering, 14 (2019) 1.
DOI: 10.1186/s40712-018-0097-7
Google Scholar
[26]
K. Bouacha, M.A. Yallese, T. Mabrouki, J.-F. Rigal, Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool. International Journal of Refractory Metals and Hard Materials, 28 (2010) 349-361.
DOI: 10.1016/j.ijrmhm.2009.11.011
Google Scholar
[27]
X. Zhang, G. Zheng, X. Cheng, Y. Li, L. Li, H. Liu, 2D fractal analysis of the cutting force and surface profile in turning of iron-based superalloy. Measurement, 151 (2020) 107125.
DOI: 10.1016/j.measurement.2019.107125
Google Scholar
[28]
R. Wang, P. Lim, L. Heng, S.D. Mun, Magnetic Abrasive Machining of Difficult-to-Cut Materials for Ultra-High-Speed Machining of AISI 304 Bars. Materials (Basel), 10 (2017) 1029.
DOI: 10.3390/ma10091029
Google Scholar
[29]
C. Camposeco-Negrete, Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA. Journal of Cleaner Production, 53 (2013) 195-203.
DOI: 10.1016/j.jclepro.2013.03.049
Google Scholar
[30]
M. Sarıkaya, A. Güllü, Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL. Journal of Cleaner Production, 65 (2014) 604-616.
DOI: 10.1016/j.jclepro.2013.08.040
Google Scholar
[31]
A. Hosseini Tazehkandi, F. Pilehvarian, B. Davoodi, Experimental investigation on removing cutting fluid from turning of Inconel 725 with coated carbide tools. Journal of Cleaner Production, 80 (2014) 271-281.
DOI: 10.1016/j.jclepro.2014.05.098
Google Scholar
[32]
S. Gara, R. Fredj, S. Naîmi, O. Tsoumarev, Prediction of cutting forces in slotting of multidirectional CFRP laminate. The International Journal of Advanced Manufacturing Technology, 89 (2017) 3379-3391.
DOI: 10.1007/s00170-016-9161-8
Google Scholar
[33]
M. Mia, M.A. Khan, N.R. Dhar, Study of surface roughness and cutting forces using ANN, RSM, and ANOVA in turning of Ti-6Al-4V under cryogenic jets applied at flank and rake faces of coated WC tool. The International Journal of Advanced Manufacturing Technology, 93 (2017) 975-991.
DOI: 10.1007/s00170-017-0566-9
Google Scholar
[34]
S. Ramesh, R. Viswanathan, S. Ambika, Measurement and optimization of surface roughness and tool wear via grey relational analysis, TOPSIS and RSA techniques. Measurement, 78 (2016) 63-72.
DOI: 10.1016/j.measurement.2015.09.036
Google Scholar
[35]
D. Shah, S. Bhavsar, Effect of Tool Nose Radius and Machining Parameters on Cutting Force, Cutting Temperature and Surface Roughness – An Experimental Study of Ti-6Al-4V (ELI). Materials Today: Proceedings, 22 (2020) 1977-1986.
DOI: 10.1016/j.matpr.2020.03.163
Google Scholar
[36]
V. Sharma, P. Kumar, J. Prakash Misra, Cutting force predictive modelling of hard turning operation using fuzzy logic. Materials Today: Proceedings, (2020).
DOI: 10.1016/j.matpr.2020.01.018
Google Scholar