[1]
E. L. Huffman, J. R. Clark, and J. R. Yeager, Gold analysis - Fire assaying and alternative methods,, Exploration and Mining Geology, vol. 7, no. 1–2. p.155–160, (1999).
Google Scholar
[2]
Reddi, G. S. and C. S. M. Rao, Analytical techniques for the determination of precious metals in geological and related materials,, Analyst, vol. 11, no. 3, p.1–8, (1999).
DOI: 10.1039/a904839a
Google Scholar
[3]
J. Haffty and Riley LB, A Manual on Fire Assaying and Determination of the Noble Metals in Geological Materials,, U.S Geol. Surv. Bull., vol. 1, no. 1445, p.1–56, (1977).
Google Scholar
[4]
R. A. Chesti, Refractories: Manufacture, properties and applications. Prentice- Hall of India, (1986).
Google Scholar
[5]
M. Martinón-Torres, T. Rehren, and I. C. Freestone, Mullite and the mystery of Hessian wares,, Nature, vol. 444, no. 7118, p.437–438, 2006,.
DOI: 10.1038/444437a
Google Scholar
[6]
H. Schneider and S. Komarneni, Basic properties of mullite,, in Mullite, Wiley – VCH Weinheim, 2005, p.141–155.
Google Scholar
[7]
M. Martinón-Torres, I. C. Freestone, A. Hunt, and T. Rehren, Mass-produced mullite crucibles in medieval Europe: Manufacture and material properties,, J. Am. Ceram. Soc., vol. 91, no. 6, p.2071–2074, 2008,.
DOI: 10.1111/j.1551-2916.2008.02383.x
Google Scholar
[8]
R. B. Asamoah et al., Industrial applications of clay materials from Ghana (a review),, Orient. J. Chem., vol. 34, no. 4, p.1719–1734, 2018,.
Google Scholar
[9]
ASTM International, Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water (ASTM C20-00),, ASTM Int. West Conshohocken, PA, vol. 00, no. July, p.3, 2000,.
DOI: 10.1520/c0020-00
Google Scholar
[10]
B. Kanka and H. Schneiider, Sintering mechanisms and microstructural development of coprecipitated mullite,, J. Mater. Sci., vol. 29, no. 5, p.1239–1249, (1994).
DOI: 10.1007/bf00975071
Google Scholar
[11]
K. G. Skinner, W. H. Cook, R. A. Potter, and H. A. Y. N. E. PALMOUR III, Effect of TiO2, Fe2O3, and alkali on mineralogical and physical properties of mullite‐type and mullite‐forming Al2O3‐SiO2 mixtures: I.,, J. Am. Ceram. Soc., vol. 36, no. 11, p.349–356, (1953).
DOI: 10.1111/j.1151-2916.1953.tb12816.x
Google Scholar
[12]
C. Sadik, I. E. El Amrani, and A. Albizane, Recent advances in silica-alumina refractory: A review,, J. Asian Ceram. Soc., vol. 2, no. 2, p.83–96, 2014,.
DOI: 10.1016/j.jascer.2014.03.001
Google Scholar
[13]
M. E. Tyrrell, Effects of impurities on sintered mullite,, (1962).
Google Scholar
[14]
E. A. Bochraraov, S. and Gemsimov, Technology of Silicate Materials. Engineering press, Bulgaria, (1977).
Google Scholar
[15]
A. C. Iyasara, E. C. Stan, O. Geoffrey, M. Joseph, N. N. Patrick, and N. Benjamin, Influence of Grog Size on the Performance of NSU Clay-Based Dense Refractory Bricks,, Am. J. Mater. Sci. Eng., vol. 4, no. 1, p.7–12, 2016,.
Google Scholar
[16]
C.-Y. Chen and W.-H. Tuan, Evolution of Mullite Texture on Firing Tape-Cast Kaolin Bodies,, J. Am. Ceram. Soc., vol. 85, no. 5, p.1121–1126, 2004,.
DOI: 10.1111/j.1151-2916.2002.tb00232.x
Google Scholar
[17]
W. E. Lee, G. P. Souza, C. J. McConville, T. Tarvornpanich, and Y. Iqbal, Mullite formation in clays and clay-derived vitreous ceramics,, J. Eur. Ceram. Soc., vol. 28, no. 2, p.465–471, 2008,.
DOI: 10.1016/j.jeurceramsoc.2007.03.009
Google Scholar
[18]
S. Lee, Y. J. Kim, and H.-S. Moon, Phase Transformation Sequence from Kaolinite to Mullite Investigated by an Energy-Filtering Transmission Electron Microscope,, J. Am. Ceram. Soc., vol. 82, no. 10, p.2841–2848, 2004,.
DOI: 10.1111/j.1151-2916.1999.tb02165.x
Google Scholar
[19]
M. Mizuno, Microstructure, Microchemistry, and Flexural Strength of Mullite Ceramics,, J. Am. Ceram. Soc., vol. 74, no. 12, p.3017–3022, 1991,.
DOI: 10.1111/j.1151-2916.1991.tb04295.x
Google Scholar
[20]
D. M. Ibrahim, S. M. Naga, Z. A. Kader, and E. A. Salam, Cordierite-mullite refractories,, Ceram. Int., vol. 21, no. 4, p.265–269, 1995,.
DOI: 10.1016/0272-8842(95)99792-a
Google Scholar
[21]
H. Schneider, J. Schreuer, and B. Hildmann, Structure and properties of mullite-A review,, J. Eur. Ceram. Soc., vol. 28, no. 2, p.329–344, 2008,.
Google Scholar
[22]
Y. F. Chen, M. C. Wang, and M. H. Hon, Phase transformation and growth of mullite in kaolin ceramics,, J. Eur. Ceram. Soc., vol. 24, no. 8, p.2389–2397, 2004,.
DOI: 10.1016/s0955-2219(03)00631-9
Google Scholar
[23]
J. B. Eggerding, C. L., Gonzales Jr, F., & Niklewski, Process for Forming Mullite,, no. 19, (1981).
Google Scholar
[24]
B. Schneider, H Schreuer, J and Hildmann, Structure and properties of mullite—a review,, J. Eur. Ceram. Soc., vol. 28, no. 2, p.329–344, 2008,.
Google Scholar
[25]
V. Viswabaskaran, F. D. Gnanam, and M. Balasubramanian, Mullitisation behaviour of calcined clay–alumina mixtures,, Ceram. Int., vol. 29, no. 5, p.561–571, (2003).
DOI: 10.1016/s0272-8842(02)00203-1
Google Scholar
[26]
T. Ebadzadeh, M. H. Sarrafi, and E. Salahi, "Microwave-assisted synthesis and sintering of mullite,, Ceram. Int., vol. 35, no. 8, p.3175–3179, (2009).
DOI: 10.1016/j.ceramint.2009.05.013
Google Scholar
[27]
M. A. Sainz, F. J. Serrano, J. M. Amigo, J. Bastida, and A. Caballero, XRD microstructural analysis of mullites obtained from kaolinite-alumina mixtures,, J. Eur. Ceram. Soc., vol. 20, no. 4, p.403–412, 2000,.
DOI: 10.1016/s0955-2219(99)00183-1
Google Scholar
[28]
N. S. Raut, P. Biswas, T. K. Bhattacharya, and K. Das, Effect of bauxite addition on densification and mullitization behaviour of West Bengal clay,, Bull. Mater. Sci., vol. 31, no. 7, p.995–999, 2008,.
DOI: 10.1007/s12034-008-0156-4
Google Scholar
[29]
S. Samal, A. K. Ray, and A. Bandopadhyay, Proposal for resources, utilization and processes of red mud in India—a review,, Int. J. Miner. Process., vol. 118, p.43–55, 2013,.
DOI: 10.1016/j.minpro.2012.11.001
Google Scholar
[30]
M. Sardy, A. Arib, K. El Abbassi, and M. Gomina, Elaboration and Characterization of Mullite Refractory Products from Moroccan Andalusite,, New J. Glas. Ceram., vol. 02, no. 03, p.121–125, 2012,.
DOI: 10.4236/njgc.2012.23017
Google Scholar
[31]
L. C. S. Zichen, "Mineralogy of High Alumina Clay-Bauxite Deposits in Shanxi and Henan Provinces,, Acta Sedimentol. Sin. 2, vol. 2, (1985).
Google Scholar
[32]
G. O. Kesse, The mineral and rock resources of Ghana. AA Balkema Publishers, Accord, MA, (1985).
Google Scholar
[33]
J. R. Dankwah, A. Y. Fosu, N. Fosu, and P. Koshy, Carbothermal Upgrading of the Awaso Bauxite Ore using Waste Pure Water Sachets as Reductant,, Ghana Min. J., vol. 15, no. 1, p.64–72, (2015).
DOI: 10.4314/gm.v16i2.8
Google Scholar
[34]
A. V. Maldhure, H. S. Tripathi, A. Ghosh, and S. K. Das, Mullite-Corundum Composites from Bauxite: Effect of Chemical Composition,, Trans. Indian Ceram. Soc., vol. 73, no. 1, p.31–36, 2014,.
DOI: 10.1080/0371750x.2013.870050
Google Scholar
[35]
C. Xu, Preparation and performance of an advanced multiphase composite ceramic material,, J. Eur. Ceram. Soc., vol. 25, no. 5, p.605–611, 2005,.
Google Scholar
[36]
B. J. Swanson, P. L., Fairbanks, C. J., Lawn, B. R., MAI, Y. W., & Hockey, "Crack‐interface grain bridging as a fracture resistance I, mechanism in ceramics: I, experimental study on alumina,, J. Am. Ceram. Soc., vol. 70, no. 4, p.279–289, (1987).
DOI: 10.1111/j.1151-2916.1987.tb04982.x
Google Scholar
[37]
A. S. Shado, O. J. Ajayi, and C. A. Umeh, The Effect of Grog Sizing on the Performance of Ire Ekiti Fire Clay Refractory Bricks,, (2018).
Google Scholar