Compositional and Structural Deficiencies Causing Failure of Local Fire Assaying Crucibles in Ghana

Article Preview

Abstract:

Locally produced crucibles in Ghana experience dimensional failures during fire assaying of ores, therefore, even with a higher cost, imported crucibles are still the most preferred choice by laboratories in Ghana because of the stable performance of up to three cycles. Assay crucibles of locally manufactured, imported and theoretically composed were sampled and analysed via reverse engineering to identify factors that are attributed to the failure during use. Field investigation and compositional, physical and structural investigations were carried out using XRD, water boiling and SEM-EDS analyses, respectively. The results indicated that failure of the local crucible can be attributed to low mullite phase in both content and planes, which could ease the crack development and enhance the thermal stability of the crucible; non converted quartz into cristobalite, which stabilises the volume expansion coefficient during the fire assaying cycles; excess quartz content and absence of alumina content weakened the corrosion resistance against attack from the basic flux of litharge; and high porosity, allowed penetration of molten charge into the structure of crucible, leading to the dissolution of free silica content into the charge and causing structural failure. To overcome such deficiencies, higher firing temperature (~1240 °C), extra soaking time, and blending of high alumina contained clay/minerals were suggested.

You might also be interested in these eBooks

Info:

Pages:

57-70

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. L. Huffman, J. R. Clark, and J. R. Yeager, Gold analysis - Fire assaying and alternative methods,, Exploration and Mining Geology, vol. 7, no. 1–2. p.155–160, (1999).

Google Scholar

[2] Reddi, G. S. and C. S. M. Rao, Analytical techniques for the determination of precious metals in geological and related materials,, Analyst, vol. 11, no. 3, p.1–8, (1999).

DOI: 10.1039/a904839a

Google Scholar

[3] J. Haffty and Riley LB, A Manual on Fire Assaying and Determination of the Noble Metals in Geological Materials,, U.S Geol. Surv. Bull., vol. 1, no. 1445, p.1–56, (1977).

Google Scholar

[4] R. A. Chesti, Refractories: Manufacture, properties and applications. Prentice- Hall of India, (1986).

Google Scholar

[5] M. Martinón-Torres, T. Rehren, and I. C. Freestone, Mullite and the mystery of Hessian wares,, Nature, vol. 444, no. 7118, p.437–438, 2006,.

DOI: 10.1038/444437a

Google Scholar

[6] H. Schneider and S. Komarneni, Basic properties of mullite,, in Mullite, Wiley – VCH Weinheim, 2005, p.141–155.

Google Scholar

[7] M. Martinón-Torres, I. C. Freestone, A. Hunt, and T. Rehren, Mass-produced mullite crucibles in medieval Europe: Manufacture and material properties,, J. Am. Ceram. Soc., vol. 91, no. 6, p.2071–2074, 2008,.

DOI: 10.1111/j.1551-2916.2008.02383.x

Google Scholar

[8] R. B. Asamoah et al., Industrial applications of clay materials from Ghana (a review),, Orient. J. Chem., vol. 34, no. 4, p.1719–1734, 2018,.

Google Scholar

[9] ASTM International, Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water (ASTM C20-00),, ASTM Int. West Conshohocken, PA, vol. 00, no. July, p.3, 2000,.

DOI: 10.1520/c0020-00

Google Scholar

[10] B. Kanka and H. Schneiider, Sintering mechanisms and microstructural development of coprecipitated mullite,, J. Mater. Sci., vol. 29, no. 5, p.1239–1249, (1994).

DOI: 10.1007/bf00975071

Google Scholar

[11] K. G. Skinner, W. H. Cook, R. A. Potter, and H. A. Y. N. E. PALMOUR III, Effect of TiO2, Fe2O3, and alkali on mineralogical and physical properties of mullite‐type and mullite‐forming Al2O3‐SiO2 mixtures: I.,, J. Am. Ceram. Soc., vol. 36, no. 11, p.349–356, (1953).

DOI: 10.1111/j.1151-2916.1953.tb12816.x

Google Scholar

[12] C. Sadik, I. E. El Amrani, and A. Albizane, Recent advances in silica-alumina refractory: A review,, J. Asian Ceram. Soc., vol. 2, no. 2, p.83–96, 2014,.

DOI: 10.1016/j.jascer.2014.03.001

Google Scholar

[13] M. E. Tyrrell, Effects of impurities on sintered mullite,, (1962).

Google Scholar

[14] E. A. Bochraraov, S. and Gemsimov, Technology of Silicate Materials. Engineering press, Bulgaria, (1977).

Google Scholar

[15] A. C. Iyasara, E. C. Stan, O. Geoffrey, M. Joseph, N. N. Patrick, and N. Benjamin, Influence of Grog Size on the Performance of NSU Clay-Based Dense Refractory Bricks,, Am. J. Mater. Sci. Eng., vol. 4, no. 1, p.7–12, 2016,.

Google Scholar

[16] C.-Y. Chen and W.-H. Tuan, Evolution of Mullite Texture on Firing Tape-Cast Kaolin Bodies,, J. Am. Ceram. Soc., vol. 85, no. 5, p.1121–1126, 2004,.

DOI: 10.1111/j.1151-2916.2002.tb00232.x

Google Scholar

[17] W. E. Lee, G. P. Souza, C. J. McConville, T. Tarvornpanich, and Y. Iqbal, Mullite formation in clays and clay-derived vitreous ceramics,, J. Eur. Ceram. Soc., vol. 28, no. 2, p.465–471, 2008,.

DOI: 10.1016/j.jeurceramsoc.2007.03.009

Google Scholar

[18] S. Lee, Y. J. Kim, and H.-S. Moon, Phase Transformation Sequence from Kaolinite to Mullite Investigated by an Energy-Filtering Transmission Electron Microscope,, J. Am. Ceram. Soc., vol. 82, no. 10, p.2841–2848, 2004,.

DOI: 10.1111/j.1151-2916.1999.tb02165.x

Google Scholar

[19] M. Mizuno, Microstructure, Microchemistry, and Flexural Strength of Mullite Ceramics,, J. Am. Ceram. Soc., vol. 74, no. 12, p.3017–3022, 1991,.

DOI: 10.1111/j.1151-2916.1991.tb04295.x

Google Scholar

[20] D. M. Ibrahim, S. M. Naga, Z. A. Kader, and E. A. Salam, Cordierite-mullite refractories,, Ceram. Int., vol. 21, no. 4, p.265–269, 1995,.

DOI: 10.1016/0272-8842(95)99792-a

Google Scholar

[21] H. Schneider, J. Schreuer, and B. Hildmann, Structure and properties of mullite-A review,, J. Eur. Ceram. Soc., vol. 28, no. 2, p.329–344, 2008,.

Google Scholar

[22] Y. F. Chen, M. C. Wang, and M. H. Hon, Phase transformation and growth of mullite in kaolin ceramics,, J. Eur. Ceram. Soc., vol. 24, no. 8, p.2389–2397, 2004,.

DOI: 10.1016/s0955-2219(03)00631-9

Google Scholar

[23] J. B. Eggerding, C. L., Gonzales Jr, F., & Niklewski, Process for Forming Mullite,, no. 19, (1981).

Google Scholar

[24] B. Schneider, H Schreuer, J and Hildmann, Structure and properties of mullite—a review,, J. Eur. Ceram. Soc., vol. 28, no. 2, p.329–344, 2008,.

Google Scholar

[25] V. Viswabaskaran, F. D. Gnanam, and M. Balasubramanian, Mullitisation behaviour of calcined clay–alumina mixtures,, Ceram. Int., vol. 29, no. 5, p.561–571, (2003).

DOI: 10.1016/s0272-8842(02)00203-1

Google Scholar

[26] T. Ebadzadeh, M. H. Sarrafi, and E. Salahi, "Microwave-assisted synthesis and sintering of mullite,, Ceram. Int., vol. 35, no. 8, p.3175–3179, (2009).

DOI: 10.1016/j.ceramint.2009.05.013

Google Scholar

[27] M. A. Sainz, F. J. Serrano, J. M. Amigo, J. Bastida, and A. Caballero, XRD microstructural analysis of mullites obtained from kaolinite-alumina mixtures,, J. Eur. Ceram. Soc., vol. 20, no. 4, p.403–412, 2000,.

DOI: 10.1016/s0955-2219(99)00183-1

Google Scholar

[28] N. S. Raut, P. Biswas, T. K. Bhattacharya, and K. Das, Effect of bauxite addition on densification and mullitization behaviour of West Bengal clay,, Bull. Mater. Sci., vol. 31, no. 7, p.995–999, 2008,.

DOI: 10.1007/s12034-008-0156-4

Google Scholar

[29] S. Samal, A. K. Ray, and A. Bandopadhyay, Proposal for resources, utilization and processes of red mud in India—a review,, Int. J. Miner. Process., vol. 118, p.43–55, 2013,.

DOI: 10.1016/j.minpro.2012.11.001

Google Scholar

[30] M. Sardy, A. Arib, K. El Abbassi, and M. Gomina, Elaboration and Characterization of Mullite Refractory Products from Moroccan Andalusite,, New J. Glas. Ceram., vol. 02, no. 03, p.121–125, 2012,.

DOI: 10.4236/njgc.2012.23017

Google Scholar

[31] L. C. S. Zichen, "Mineralogy of High Alumina Clay-Bauxite Deposits in Shanxi and Henan Provinces,, Acta Sedimentol. Sin. 2, vol. 2, (1985).

Google Scholar

[32] G. O. Kesse, The mineral and rock resources of Ghana. AA Balkema Publishers, Accord, MA, (1985).

Google Scholar

[33] J. R. Dankwah, A. Y. Fosu, N. Fosu, and P. Koshy, Carbothermal Upgrading of the Awaso Bauxite Ore using Waste Pure Water Sachets as Reductant,, Ghana Min. J., vol. 15, no. 1, p.64–72, (2015).

DOI: 10.4314/gm.v16i2.8

Google Scholar

[34] A. V. Maldhure, H. S. Tripathi, A. Ghosh, and S. K. Das, Mullite-Corundum Composites from Bauxite: Effect of Chemical Composition,, Trans. Indian Ceram. Soc., vol. 73, no. 1, p.31–36, 2014,.

DOI: 10.1080/0371750x.2013.870050

Google Scholar

[35] C. Xu, Preparation and performance of an advanced multiphase composite ceramic material,, J. Eur. Ceram. Soc., vol. 25, no. 5, p.605–611, 2005,.

Google Scholar

[36] B. J. Swanson, P. L., Fairbanks, C. J., Lawn, B. R., MAI, Y. W., & Hockey, "Crack‐interface grain bridging as a fracture resistance I, mechanism in ceramics: I, experimental study on alumina,, J. Am. Ceram. Soc., vol. 70, no. 4, p.279–289, (1987).

DOI: 10.1111/j.1151-2916.1987.tb04982.x

Google Scholar

[37] A. S. Shado, O. J. Ajayi, and C. A. Umeh, The Effect of Grog Sizing on the Performance of Ire Ekiti Fire Clay Refractory Bricks,, (2018).

Google Scholar