Microstructural and Mechanical Characterization of the Yb: YAG Laser Welding of High-Pressure Die-Casting Mg-Al-Mn Magnesium Alloy

Article Preview

Abstract:

In this work, the Yb:YAG laser beam welding of the magnesium alloy AM60 was studied. A laser power of 2 kW and a welding speed of 3.5 m / min give a different welding quality than that obtained by CO2 laser with the same parameters. The metallurgical characterization, by optical microscopy, showed the formation of four distinct zones : base metal (BM), heat affected zone (HAZ), the partially fusion zone (PFZ) and the fusion zone (FZ), due to the thermal effect produced by the laser welding thermal cycle. Their dimensions are quantified. The microstructural examination using scanning electron microscopy showed the presence of fine dendritic structure in the FZ although the use of electron dispersive spectroscopy analysis confirm that an eutectic Mg17Al12 phase are surrounded by α-Mg solid solution in the HAZ. Electron backscattered diffraction technique revealed an important grain refinement in FZ and considerable twining phenomena in HAZ, but no texture. X-ray diffraction technique has been used, full width at half maximum of diffraction peaks is measured; it also confirmed the grain refinement in FZ in comparison to BM and HAZ. Both microhardness and tensile proprieties of the complete weld joint are similar to those of the BM.

You might also be interested in these eBooks

Info:

Pages:

95-109

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.A. Monteiro, S.J. Buso and L.V. da Silva. Application of Magnesium Alloys in Transport, New Features on Magnesium Alloys, W.A. Monteiro ed., InTech (2012), 161-174.

DOI: 10.5772/48273

Google Scholar

[2] M.K. Kulekci, Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol, 39 (2008), 851–865.

DOI: 10.1007/s00170-007-1279-2

Google Scholar

[3] G. Padmanaban, V. Balasubramanian , Influences of pulsed current parameters on mechanical and metallurgical properties of gas tungsten arc welded AZ31B magnesium alloy, V. Met. Mater. Int., 17, No. 4 (2011), 679-687.

DOI: 10.1007/s12540-011-0826-4

Google Scholar

[4] G. Song and P. Wang, Pulsed MIG welding of AZ31B magnesium alloy, Materials Science and Technology, 27:2 (2011), 518-524.

DOI: 10.1179/026708309x12506933873701

Google Scholar

[5] Xu. Shen, G. Ma and P. Chen, Effect of welding process parameters on hybrid GMAW-GTAW welding process of AZ31B magnesium alloy. Int J Adv Manuf Technol, 94 (2018), 2811.

DOI: 10.1007/s00170-017-0954-1

Google Scholar

[6] W. Wang, D. Deng, Z. Mao et al., Influence of tool rotation rates on temperature profiles and mechanical properties of friction stir welded AZ31magnesium alloy. Int J Adv Manuf Technol, 88 (2017), 2191.

DOI: 10.1007/s00170-016-8918-4

Google Scholar

[7] X. Cao, M. Jahazi, J. P. Immarigeon, et al., A review of laser welding techniques for magnesium alloys, Journal of Materials Processing Technology, 171 (2006), 288.

DOI: 10.1016/j.jmatprotec.2005.06.068

Google Scholar

[8] A. Belhadj, J.E. Masse, L. Barrallier et al., CO2 laser beam welding of AM60 magnesium-based alloy. Journal of Laser Applications, 22:2 (2010), 56-61.

DOI: 10.2351/1.3455823

Google Scholar

[9] M. Wahba, M. Mizutani, Y. Kawahito et al., Laser welding of die-cast AZ91D magnesium alloy, Material & Design, 33 (2012), 69-576.

DOI: 10.1016/j.matdes.2011.05.016

Google Scholar

[10] R.S. Coelho, A. Kostka, H. Pinto et al., Microstructure and mechanical properties of magnesium alloy AZ31B laser beam welds, Materials Science and Engineering: A, 485:1-2 (2008), 20-30.

DOI: 10.1016/j.msea.2007.07.073

Google Scholar

[11] H.Y. Wang and Z.J. Li, Investigation of laser beam welding process of AZ61 magnesium-based alloy, Acta Metallurgica Sinica (English Letters), 18:4 (2006), 287-294.

DOI: 10.1016/s1006-7191(06)60057-4

Google Scholar

[12] G. Padmanaban and V. Balasubramanian, Effects of laser beam welding parameters on mechanical properties and microstructure of AZ31B magnesium alloy, Transactions of Nonferrous Metals Society of China, 21:9 (2011), 1917-1924.

DOI: 10.1016/s1003-6326(11)60950-3

Google Scholar

[13] Y. Quan, Z. Chen, X. Gong et al., CO2 laser beam welding of dissimilar magnesium-based alloys, Materials Science and Engineering: A, 496:1-2 (2008), 45-51.

DOI: 10.1016/j.msea.2008.04.065

Google Scholar

[14] C.M. Lin, H.L. Tsai, C.L. Lee et al., Evolution of microstructures and properties of magnesium alloy weldments produced with CO2 laser process, Materials Science and Engineering: A, 548 (2012), 12-18.

DOI: 10.1016/j.msea.2012.03.033

Google Scholar

[15] Z. Xiaobin and C. Zhanyi, Effects of pulse shaping on Nd:YAG laser spot welds in an AZ31 magnesium alloy, Optics and Lasers in Engineering, 119 (2019), 1-8.

DOI: 10.1016/j.optlaseng.2019.02.002

Google Scholar

[16] F. Caiazzo, V. Alfieri, F. Cardaropoli, et al., Butt autogenous laser welding of AA2024 aluminum alloy thin sheets with a Yb:YAG disk laser. Int J Adv Manuf Technol, 67 (2013), 2157-2169.

DOI: 10.1007/s00170-012-4637-7

Google Scholar

[17] B. Chang, J. Blackburn, C. Allen et al., Studies on the spatter behaviour when welding AA5083 with a Yb-fibre laser. Int J Adv Manuf Technol, 84 (2016), 1769.

DOI: 10.1007/s00170-015-7863-y

Google Scholar

[18] S.T. Auwal, S. Ramesh, F. Yusof et al., A review on laser beam welding of titanium alloys. Int J Adv Manuf Technol, 97 (2018), 1071-1098.

DOI: 10.1007/s00170-018-2030-x

Google Scholar

[19] N.V. Ravi Kumar, J. J. Blandin and M. Suéry, Effect of thermomechanical treatments on the microstructure of AZ91 alloy. Magnesium Alloys and their Applications. K. U. Kainer ed. (2006), 161–167.

DOI: 10.1002/3527607552.ch27

Google Scholar

[20] A. Khosravani , D.T. Fullwood , B.L. Adams et al., Nucleation and propagation of {10-12} twins in AZ31 magnesium alloy. Acta Materialia, 100 (2015), 202-214.

Google Scholar

[21] NF L06-395 standard, february 2010, Aerospace series - Weldments and brazements for aerospace structures - Joints of metallic materials by laser beam welding - Quality of weldments – Industrie aérospatiale.

DOI: 10.3403/30197752u

Google Scholar

[22] P. Asadi, K. Kazemi-Choobi and A. Elhami, Welding of magnesium alloys, Welding of Magnesium Alloys, New Features on Magnesium Alloys, W.A. Monteiro ed., InTech (2012), 121-158.

DOI: 10.5772/47849

Google Scholar

[23] T. Zhu, Z.W. Chen and W. Gao, Dissolution of Eutectic beta-Mg17Al12 Phase in Magnesium AZ91 Cast Alloy at Temperatures Close to Eutectic Temperature, Journal of Materials Engineering and Performance, 19 (2010), 860–867.

DOI: 10.1007/s11665-009-9539-y

Google Scholar

[24] V.Y. Gertsman, J. Li, S. Xu et al., Microstructure and Second-Phase Particles in Low- and High-Pressure Die-Cast Magnesium Alloy AM50, Metall and Mat Trans A, 36 (2005), 1989-1997.

DOI: 10.1007/s11661-005-0319-5

Google Scholar

[25] A. Kiełbus, Precipitate processes in Mg-5Al magnesium alloy, Solid State Phenomena, 191 (2012), 131-136.

DOI: 10.4028/www.scientific.net/ssp.191.131

Google Scholar

[26] A.J. Gesing, J.H. Sokolowsk, P.C. Marchwica et al., Cooling curve and microchemical phase analysis of rapidly quenched magnesium AM60B and AE44 alloys, Journal of Achievements in Materials and Manufacturing Engineering, 58 (2013), 59-73.

DOI: 10.1002/9781118359228.ch94

Google Scholar

[27] F. Czerwinski, Near-liquidus molding of Mg–Al and Mg–Al–Zn alloys, Acta Materialia, 53 (2005), 1973-1984.

DOI: 10.1016/j.actamat.2005.01.009

Google Scholar

[28] A. Kiełbus, T. Rzychoń and R. Cibis, Microstructure of AM50 die casting magnesium alloy, Journal of Achievements in Materials and Manufacturing Engineering, 18 (2006), 135-138.

Google Scholar

[29] L.Yu, K. Nakata, N. Yamamoto et al., Texture and its effect on mechanical properties in fiber laser weld of a fine-grained Mg alloy, Materials letters, 63 (2009), 870-872.

DOI: 10.1016/j.matlet.2009.01.050

Google Scholar

[30] M.R. Barnett, Twinning and the ductility of magnesium alloys, Materials Science and Engineering A, 464 (2007), 1-7.

Google Scholar

[31] S. Barbagallo, H.I. Laukli, O. Lohne et al., Divorced eutectic in a HPDC magnesium–aluminum alloy, Journal of Alloys and Compounds, 378 (2004), 226-232.

DOI: 10.1016/j.jallcom.2003.11.174

Google Scholar

[32] V. Uvarov and I. Popov, Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials, Materials Characterization, 85 (2013), 111-123.

DOI: 10.1016/j.matchar.2013.09.002

Google Scholar

[33] H. Zhang, K. Chong, G. Xiao et al., TIG cladding in-situ nano vanadium carbide reinforced Fe-based ultra-fine grain layers under water cooling condition, Surf Coat Technol, 352 (2018), 222-230.

DOI: 10.1016/j.surfcoat.2018.08.032

Google Scholar

[34] J. Shen, L. Wen, Y. Li et al., Effects of welding speed on the microstructure and mechanical properties of laser welded AZ61 magnesium alloy joints, Materials Science and Engineering A, 578 (2013), 303-309.

DOI: 10.1016/j.msea.2013.04.093

Google Scholar

[35] E. He, J. Liu, J. Lee et al., Effect of porosities on tensile properties of laser-welded Al-Li alloy: an experimental and modelling study, Int J Adv Manuf Technol, 95(2018), 659-671.

DOI: 10.1007/s00170-017-1175-3

Google Scholar