[1]
W.A. Monteiro, S.J. Buso and L.V. da Silva. Application of Magnesium Alloys in Transport, New Features on Magnesium Alloys, W.A. Monteiro ed., InTech (2012), 161-174.
DOI: 10.5772/48273
Google Scholar
[2]
M.K. Kulekci, Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol, 39 (2008), 851–865.
DOI: 10.1007/s00170-007-1279-2
Google Scholar
[3]
G. Padmanaban, V. Balasubramanian , Influences of pulsed current parameters on mechanical and metallurgical properties of gas tungsten arc welded AZ31B magnesium alloy, V. Met. Mater. Int., 17, No. 4 (2011), 679-687.
DOI: 10.1007/s12540-011-0826-4
Google Scholar
[4]
G. Song and P. Wang, Pulsed MIG welding of AZ31B magnesium alloy, Materials Science and Technology, 27:2 (2011), 518-524.
DOI: 10.1179/026708309x12506933873701
Google Scholar
[5]
Xu. Shen, G. Ma and P. Chen, Effect of welding process parameters on hybrid GMAW-GTAW welding process of AZ31B magnesium alloy. Int J Adv Manuf Technol, 94 (2018), 2811.
DOI: 10.1007/s00170-017-0954-1
Google Scholar
[6]
W. Wang, D. Deng, Z. Mao et al., Influence of tool rotation rates on temperature profiles and mechanical properties of friction stir welded AZ31magnesium alloy. Int J Adv Manuf Technol, 88 (2017), 2191.
DOI: 10.1007/s00170-016-8918-4
Google Scholar
[7]
X. Cao, M. Jahazi, J. P. Immarigeon, et al., A review of laser welding techniques for magnesium alloys, Journal of Materials Processing Technology, 171 (2006), 288.
DOI: 10.1016/j.jmatprotec.2005.06.068
Google Scholar
[8]
A. Belhadj, J.E. Masse, L. Barrallier et al., CO2 laser beam welding of AM60 magnesium-based alloy. Journal of Laser Applications, 22:2 (2010), 56-61.
DOI: 10.2351/1.3455823
Google Scholar
[9]
M. Wahba, M. Mizutani, Y. Kawahito et al., Laser welding of die-cast AZ91D magnesium alloy, Material & Design, 33 (2012), 69-576.
DOI: 10.1016/j.matdes.2011.05.016
Google Scholar
[10]
R.S. Coelho, A. Kostka, H. Pinto et al., Microstructure and mechanical properties of magnesium alloy AZ31B laser beam welds, Materials Science and Engineering: A, 485:1-2 (2008), 20-30.
DOI: 10.1016/j.msea.2007.07.073
Google Scholar
[11]
H.Y. Wang and Z.J. Li, Investigation of laser beam welding process of AZ61 magnesium-based alloy, Acta Metallurgica Sinica (English Letters), 18:4 (2006), 287-294.
DOI: 10.1016/s1006-7191(06)60057-4
Google Scholar
[12]
G. Padmanaban and V. Balasubramanian, Effects of laser beam welding parameters on mechanical properties and microstructure of AZ31B magnesium alloy, Transactions of Nonferrous Metals Society of China, 21:9 (2011), 1917-1924.
DOI: 10.1016/s1003-6326(11)60950-3
Google Scholar
[13]
Y. Quan, Z. Chen, X. Gong et al., CO2 laser beam welding of dissimilar magnesium-based alloys, Materials Science and Engineering: A, 496:1-2 (2008), 45-51.
DOI: 10.1016/j.msea.2008.04.065
Google Scholar
[14]
C.M. Lin, H.L. Tsai, C.L. Lee et al., Evolution of microstructures and properties of magnesium alloy weldments produced with CO2 laser process, Materials Science and Engineering: A, 548 (2012), 12-18.
DOI: 10.1016/j.msea.2012.03.033
Google Scholar
[15]
Z. Xiaobin and C. Zhanyi, Effects of pulse shaping on Nd:YAG laser spot welds in an AZ31 magnesium alloy, Optics and Lasers in Engineering, 119 (2019), 1-8.
DOI: 10.1016/j.optlaseng.2019.02.002
Google Scholar
[16]
F. Caiazzo, V. Alfieri, F. Cardaropoli, et al., Butt autogenous laser welding of AA2024 aluminum alloy thin sheets with a Yb:YAG disk laser. Int J Adv Manuf Technol, 67 (2013), 2157-2169.
DOI: 10.1007/s00170-012-4637-7
Google Scholar
[17]
B. Chang, J. Blackburn, C. Allen et al., Studies on the spatter behaviour when welding AA5083 with a Yb-fibre laser. Int J Adv Manuf Technol, 84 (2016), 1769.
DOI: 10.1007/s00170-015-7863-y
Google Scholar
[18]
S.T. Auwal, S. Ramesh, F. Yusof et al., A review on laser beam welding of titanium alloys. Int J Adv Manuf Technol, 97 (2018), 1071-1098.
DOI: 10.1007/s00170-018-2030-x
Google Scholar
[19]
N.V. Ravi Kumar, J. J. Blandin and M. Suéry, Effect of thermomechanical treatments on the microstructure of AZ91 alloy. Magnesium Alloys and their Applications. K. U. Kainer ed. (2006), 161–167.
DOI: 10.1002/3527607552.ch27
Google Scholar
[20]
A. Khosravani , D.T. Fullwood , B.L. Adams et al., Nucleation and propagation of {10-12} twins in AZ31 magnesium alloy. Acta Materialia, 100 (2015), 202-214.
Google Scholar
[21]
NF L06-395 standard, february 2010, Aerospace series - Weldments and brazements for aerospace structures - Joints of metallic materials by laser beam welding - Quality of weldments – Industrie aérospatiale.
DOI: 10.3403/30197752u
Google Scholar
[22]
P. Asadi, K. Kazemi-Choobi and A. Elhami, Welding of magnesium alloys, Welding of Magnesium Alloys, New Features on Magnesium Alloys, W.A. Monteiro ed., InTech (2012), 121-158.
DOI: 10.5772/47849
Google Scholar
[23]
T. Zhu, Z.W. Chen and W. Gao, Dissolution of Eutectic beta-Mg17Al12 Phase in Magnesium AZ91 Cast Alloy at Temperatures Close to Eutectic Temperature, Journal of Materials Engineering and Performance, 19 (2010), 860–867.
DOI: 10.1007/s11665-009-9539-y
Google Scholar
[24]
V.Y. Gertsman, J. Li, S. Xu et al., Microstructure and Second-Phase Particles in Low- and High-Pressure Die-Cast Magnesium Alloy AM50, Metall and Mat Trans A, 36 (2005), 1989-1997.
DOI: 10.1007/s11661-005-0319-5
Google Scholar
[25]
A. Kiełbus, Precipitate processes in Mg-5Al magnesium alloy, Solid State Phenomena, 191 (2012), 131-136.
DOI: 10.4028/www.scientific.net/ssp.191.131
Google Scholar
[26]
A.J. Gesing, J.H. Sokolowsk, P.C. Marchwica et al., Cooling curve and microchemical phase analysis of rapidly quenched magnesium AM60B and AE44 alloys, Journal of Achievements in Materials and Manufacturing Engineering, 58 (2013), 59-73.
DOI: 10.1002/9781118359228.ch94
Google Scholar
[27]
F. Czerwinski, Near-liquidus molding of Mg–Al and Mg–Al–Zn alloys, Acta Materialia, 53 (2005), 1973-1984.
DOI: 10.1016/j.actamat.2005.01.009
Google Scholar
[28]
A. Kiełbus, T. Rzychoń and R. Cibis, Microstructure of AM50 die casting magnesium alloy, Journal of Achievements in Materials and Manufacturing Engineering, 18 (2006), 135-138.
Google Scholar
[29]
L.Yu, K. Nakata, N. Yamamoto et al., Texture and its effect on mechanical properties in fiber laser weld of a fine-grained Mg alloy, Materials letters, 63 (2009), 870-872.
DOI: 10.1016/j.matlet.2009.01.050
Google Scholar
[30]
M.R. Barnett, Twinning and the ductility of magnesium alloys, Materials Science and Engineering A, 464 (2007), 1-7.
Google Scholar
[31]
S. Barbagallo, H.I. Laukli, O. Lohne et al., Divorced eutectic in a HPDC magnesium–aluminum alloy, Journal of Alloys and Compounds, 378 (2004), 226-232.
DOI: 10.1016/j.jallcom.2003.11.174
Google Scholar
[32]
V. Uvarov and I. Popov, Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials, Materials Characterization, 85 (2013), 111-123.
DOI: 10.1016/j.matchar.2013.09.002
Google Scholar
[33]
H. Zhang, K. Chong, G. Xiao et al., TIG cladding in-situ nano vanadium carbide reinforced Fe-based ultra-fine grain layers under water cooling condition, Surf Coat Technol, 352 (2018), 222-230.
DOI: 10.1016/j.surfcoat.2018.08.032
Google Scholar
[34]
J. Shen, L. Wen, Y. Li et al., Effects of welding speed on the microstructure and mechanical properties of laser welded AZ61 magnesium alloy joints, Materials Science and Engineering A, 578 (2013), 303-309.
DOI: 10.1016/j.msea.2013.04.093
Google Scholar
[35]
E. He, J. Liu, J. Lee et al., Effect of porosities on tensile properties of laser-welded Al-Li alloy: an experimental and modelling study, Int J Adv Manuf Technol, 95(2018), 659-671.
DOI: 10.1007/s00170-017-1175-3
Google Scholar