[1]
C.C. Fu, L.J. Chang, Y.C. Huang, P.W. Wong, Jason S.C. Jang, Microstructure and Mechanical Properties of Solid-Phase Sintered Heavy Tungsten Alloy, Advanced Materials Research, 2006 (Volumes 15-17), pp.575-580.
DOI: 10.4028/www.scientific.net/amr.15-17.575
Google Scholar
[2]
J. H. Ryu, S.H. Hong, W. H. Baek, Mechanical alloying process of 93W-5.6Ni-1.4Fe tungsten heavy alloy, Journal of Materials Processing Technology ,1997, Volume 63, pp.292-297.
DOI: 10.1016/s0924-0136(96)02638-6
Google Scholar
[3]
J.M. Guilemany, I. Sanchiz, B.G. Mellor, N. Llorca, J.R. Miguel, Mechanical-property relationships of Co/WC and CoNiFe/WC hard metal alloys, International Journal of Refractory Metals and Hard Materials. Volume 12, Issue 4, 1993–1994, Pages 199-206.
DOI: 10.1016/0263-4368(93)90049-l
Google Scholar
[4]
S.H. Chang, S.L. Chen, Characterization and properties of sintered WC–Co and WC–Ni–Fe hard metal alloys, Journal of Alloys and Compounds 585 (2014) 407–413.
DOI: 10.1016/j.jallcom.2013.09.188
Google Scholar
[5]
C.M. Fernandes, A.M.R. Senos, Cemented carbide phase diagrams: A review, International Journal of Refractory Metals and Hard Materials,Volume 29, Issue 4, July 2011, Pages 405-418.
DOI: 10.1016/j.ijrmhm.2011.02.004
Google Scholar
[6]
R. Daramwar, Y. Patil, P. Patel, O. Walke, K. Thorat, Production of Powder Compact with the help of Universal Testing Machine International Research Journal of Engineering and Technology (IRJET) Volume: 06 Issue: 04 | Apr 2019 4392–4396.
Google Scholar
[7]
Z-W. Zhang, J. EnZhou, S.QiXi, G. Ran, P.L. Li, Conf. Materials Science and Engineering: A, Volume 379, Issues 1–2, 15 August 2004, Pages 148-153.
Google Scholar
[8]
L. Baroura. A. Boukhobza, A. Derardja, K. Fedaoui, Study of Microstructure and Mechanical Properties of Sintered Fe-Cu Alloys, International Journal of Engineering Research in Africa, 2018 Vol. 34, pp.5-12.
DOI: 10.4028/www.scientific.net/jera.34.5
Google Scholar
[9]
Y. Wang, X. Xiong, L. Xie, X. Xu, X. Min and F. Zheng, Sintering Behavior of Tungsten Heavy Alloy Products Made by Plasma Spray Forming, Materials Transactions, Vol. 52, No. 4 (2011) p.759 to 767.
DOI: 10.2320/matertrans.m2010391
Google Scholar
[10]
L. Mibarki, M. Zidani, A. Boukhobza, S. Mechachti and K. Fedaoui, Effect of the Proportion of Tungsten Element on the Mechanical and Structural Properties of (Fe3C-W-Ni) Sintered Alloy, Diffusion Foundations , 2018,Vol. 18, pp.35-40.
DOI: 10.4028/www.scientific.net/df.18.35
Google Scholar
[11]
L. Mebarki, M. Zidani, S. Mechacheti, H. Farh, and D. Miroud, Effect Of Nickel Addition Study On The Mechanical Properties Of The (Fe3C-Ni) Alloy Obtained By Solid Phase Compaction And Sintering, International Journal JERA, (2017),Vol. 32, pp.18-24.
DOI: 10.4028/www.scientific.net/jera.32.18
Google Scholar
[12]
X. Deng, G.B. Piotrowski, J.J. Williams, N. Chawla, Effect of porosity and tension compression asymmetry on the Bauschinger effect in porous sintered steels. International Journal of Fatigue 27 (2005)1233–1243.
DOI: 10.1016/j.ijfatigue.2005.06.041
Google Scholar
[13]
Z. He, T. H. Crystallization and thermal stability of mechanically alloyed W-Ni-Fe noncrystalline materials Courtney in Materials Science and Engineering A315, 2001, Vol 315, Num 1-2, pp.166-173.
DOI: 10.1016/s0921-5093(01)01148-0
Google Scholar
[14]
S.H. Hong, H.J. Ryu, W.H, Baek, Matrix pools in a partially mechanically alloyed tungsten heavy alloy for localized shear deformation, Materials Science and Engineering A vol. 333, 1-2 2002 pp.187-192.
DOI: 10.1016/s0921-5093(01)01839-1
Google Scholar
[15]
V.M. Nadutov, A.I. Ustinov, S.A. Demchenkov, Ye.O. Svystunov, V.S. Skorodzievski Structure and Properties of Nanostructured Vacuum-Deposited Foils of Invar Fe– (35–38 wt %) Ni Alloys, Journal of Materials Science & Technology 31 (2015) 1079–1086.
DOI: 10.1016/j.jmst.2015.09.011
Google Scholar