Entropy Analysis of the Nonlinear Convective Flow of a Jeffrey Fluid over an Inclined Sheet with Variable Electrical Conductivity and Thermal Conductivity

Article Preview

Abstract:

A steady two-dimensional nonlinear convective flow of a viscous, incompressible, electrically conducting, and non-Newtonian Jeffrey fluid over an inclined stretching sheet with convective boundary conditions and entropy generation is studied under the influence of transverse magnetic field, electrical conductivity and thermal conductivity. The thermal conductivity and electrical conductivity are temperature dependent functions. The governing continuity, momentum and energy equations are transformed to ordinary differential equations (ODEs) using appropriate similarity variables. The resulting coupled ODEs and the corresponding boundary conditions, are solved numerically using Runge-Kutta fourth order method and shooting technique. The velocity, entropy generation rate, temperature and Bejan distributions are presented graphically and discussed. The numerical values of the skin-friction and Nusselt number are obtained and also discussed for various thermophysical parameters through a Table. Furthermore, a comparison with earlier work done with limiting case was carried out and found to be in excellent agreement.

You might also be interested in these eBooks

Info:

Pages:

73-91

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Vafai K., Handbook of Porous Media, Marcel Dekker, New York. (2000).

Google Scholar

[2] Ingham D.B., Pop I., Transport Phenomena in Porous media, Elsevier, Oxford. (2005).

Google Scholar

[3] Nield D.A., Bejan A., Convection in porous media, 4th Ed., Springer-Verlag, New York. (2013).

Google Scholar

[4] Partha M. K., Nonlinear Convection in a non-Darcy Porous Medium, Appl. Math. Mech. Engl. 31(2010), 565 – 574.

DOI: 10.1007/s10483-010-0504-6

Google Scholar

[5] 4Kameswaran P. K., Sibanda P., Partha M. K. & Murthy P. V. S. N,. (2014), Thermophoretic and Nonlinear Convection in Non-Darcy porous Medium, Journal of Heat Transfer, 136/042601 – 1.

DOI: 10.1115/1.4025902

Google Scholar

[6] RamReddy C. & Pradeepa T., Spectral Quasi-linearization Method for Homogeneous-Heterogeneous Reactions on Nonlinear Convection Flow of Micropolar Fluid Saturated Porous Medium with Convective Boundary Condition, Open Eng. 6(2016): 106 – 119.

DOI: 10.1515/eng-2016-0015

Google Scholar

[7] Qayyum S., Hayat T., Waqas M. & Alsaedi A., Chemical Reaction and Heat Geration/Absorption Aspects in MHD Nonlinear Convective Flow of Third Grade Nanofluid Over a Nonlinear Stretching Sheet With Variable Thickness". Res. Phys.; 7(2017): 2752 – 2761.

DOI: 10.1016/j.rinp.2017.07.043

Google Scholar

[8] Hayat T., Qayyum S. & Alsaedi A., Mechanisms of Nonlinear Convective Flow of Jeffrey Nanofluid Due To Nonlinear Radially stretching sheet With Convective Conditions and Magnetic Field, Res. Phys. 7(2017):2341 – 2351.

DOI: 10.1016/j.rinp.2017.06.052

Google Scholar

[9] RamReddy Ch., Nareen P. & Srinirasachaya D., Nonliear Convective flow of nonNewtonian fluid over an inclined plate with convective surface condition: a Darcy Forchhiemer model, Int. J. Appl. Comput Math.4(2018):51.

DOI: 10.1007/s40819-018-0484-z

Google Scholar

[10] Adesanya S. O., Ogunseye H. A., Lebelo R. S. Moloi K. C. & Adeyemi O. G. Second Law Analysis For Nonlinear Convective flow of a Reactive Couple Stress Fluid Through a Vertical Channel , Heliyon 4: e00907(2018).

DOI: 10.1016/j.heliyon.2018.e00907

Google Scholar

[11] Yusuf, T. A. & Gbadeyan, J. A. Entropy generation on Maxwell fluid flow past an inclined stretching plate with slip and convective surface conditions: Darcy-Forchheimer Model. Nano Hybrids and Composites; 26: 62 – 83 (2019).

DOI: 10.4028/www.scientific.net/nhc.26.62

Google Scholar

[12] Bejan A., Second Law analysis in Heat transfer in heat transfer and thermal design, Adv. Heat. Trans.; 15(1982): 1-58.

DOI: 10.1016/s0065-2717(08)70172-2

Google Scholar

[13] Bejan A., Convective Heat Transfer 2nd Ed. New York: Wiley; (1995).

Google Scholar

[14] Bejan A., Entropy Generation minimization, thenew thermodynamics of finite size devices and finite time processes. J. Appl. Phys.; 79(1996): 1191.

DOI: 10.1063/1.362674

Google Scholar

[15] Bejan A., The first NATO advanced institute on thermodynamics optimization (Neptun, Romania). Eenergy; 24(1999): 753-759.

DOI: 10.1016/s0360-5442(99)00020-1

Google Scholar

[16] Butt, A.S., Munawar S. & Ali A., Effects of viscoelasticity on entropy generation in porous medium over a stretching plate World appl. Sci. J.; 17(4) (2012): 516-523.

Google Scholar

[17] Butt, A.S. & Ali A., Effects of magnetic field on entropy generation in flow and heat transfer due to radially stretching surface, Chin. Phys. Lett. 30(2012): 2704-2708.

DOI: 10.1088/0256-307x/30/2/024701

Google Scholar

[18] Dalir N., Numerical study of entropy generation for forced convection flow and heat transfer of Jeffery fluid over a stretching sheet. Alexandria Eng. J.; 53(2014): 769-778.

DOI: 10.1016/j.aej.2014.08.005

Google Scholar

[19] Dalir N., Dehsara M. & Nourazar S. S., Entropy Analysis For Magnetohydrodynamic Flow and Heat Transfer of a Jeffrey Nanofluid Over a Stretching Sheet, Energy, http://dx.doi.org/10.1016.j.energy.2014.11.021, (2014).

DOI: 10.1016/j.energy.2014.11.021

Google Scholar

[20] Rehman S., Haq R. Khan Z. H. & Lee Chanhoon, Entropy Generation Analysis For non-Newtonian Nanofluid With Zero Normal Flux of Nanoparticles at the Strtching Surface, J. Tai. Ist. Chem. Eng18(14) (2016):1 – 10.

DOI: 10.1016/j.jtice.2016.03.006

Google Scholar

[21] Almakki M., Nandy S.K, Mondal S., Sibanda P. & Sibanda D., A model for entropy generation in stagnation point flow in a non-newtonian Jeffery, Maxwell and Oldroyd-B Nanofluids, Heat transfer Asian Res; (2018): 1-18.

DOI: 10.1002/htj.21366

Google Scholar

[22] Alharbi S.O., Dawar A., Shah Z., Khan W., Idrees M., Islam S. & Khan I.,, Entropy generation in MHD Erying-powell fluid flow over an unsteady oscillation porous stretching surface under the impact of thermal radiation and heat source/sink, Appl. Sci.; 32(2018):2588-2576.

DOI: 10.3390/app8122588

Google Scholar

[23] Yusuf, T. A., Adesanya, S. O. & Gbadeyan, J. A., Entropy generation on MHD Williamson nanofluid over a convectively heated stretching plate with chemical reaction. Heat Transfer. 2020; 1 – 18 (2020).

DOI: 10.1002/htj.21703

Google Scholar

[24] Gbadeyan J. A. & Akinremi O. J., Entropy generation and heat transfer for reactive, MHD flow of a Jeffrey fluid over a stretching sheet, J. of Nig. Ass. Math. Phys. 52(3) (2019): 85 – 98.

Google Scholar

[25] Jewel Rana B. M., Ahmed R. & Ahmmed S. F., Effects of Variable Electrical Conductivity and Thermal Conductivity on Unsteady MHD Free Convection Flow Past an Exponential Accelerated Inclined Plate, AIP Conference Proceedings 1851, 020058(2017).

DOI: 10.1063/1.4984687

Google Scholar

[26] Shrama P. R. & Singh G., Steady MHD natural convection flow with variable electrical conductivity and heat generation along an isothermal vertical plate, Tamkang Journal of Science and Engineering, 13(2010): 235 – 242.

Google Scholar

[27] Gbadeyan, J. A., Titiloye, E. O. & Adeosun, A. T., Effects of variable thermal conductivity and viscosity on Casson nanofluids flow with convective heating and velocity slip. Heliyon 6: 1 – 10 (2020).

DOI: 10.1016/j.heliyon.2019.e03076

Google Scholar

[28] Adesanya, S. O., Dairo, O. F., Yusuf, T. A., Onaneye, A. S. & Akerete, S. A., Thermodynamics analysis for heated gravity driven hydromagnetic couple stress film with viscous dissipation effects. Physica A.; 540: 123150 (2019).

DOI: 10.1016/j.physa.2019.123150

Google Scholar

[29] Gbadeyan, J. A. & Yusuf, A. T., Effects of nonlinear partial slip and thermal radiation on Oldroyd 8-constant fluid in a channel with convective boundary conditions. Heat Transfer – Asian Res. 2019: 1 – 24 (2019).

DOI: 10.1002/htj.21637

Google Scholar

[30] Hayat T., Iqbal Z., Mustafa M. & Alsaedi A., Unsteady flow anf heat transfer of Jeffrey fluid over a stretching sheet, Thermal Science, 18(4) (2011): 1069 – 1078.

DOI: 10.2298/tsci110907092h

Google Scholar

[31] Hameed M., Khan A. A., Ellahi R. & Raza M., Study of magnetic and heat transfer on the peristaltic transport of a fractional second grade fluid in a vertical tube, Int. J. Numer. Math. Fluids; 69(2015): 1350 – 1362.

DOI: 10.1016/j.jestch.2015.03.004

Google Scholar

[32] Akinbobola T. E. & Okoya S. S., The flow of second grade fluid over a stretching sheet with variable thermal conductivity and viscosity in the presence of heat source/sink, J. Nig. Math. Soc.,34(2015):331 – 342.

DOI: 10.1016/j.jnnms.2015.10.002

Google Scholar

[33] Sandeep N., & Sulochana C., Momentum and Heat transfer behaviour of Jeffery, Maxwell and Oldroyd- B nanofluids past a stretching surface with non-uniform heat source/sink, Ain Shams Engineering Journal 9(2018): 517 – 524.

DOI: 10.1016/j.asej.2016.02.008

Google Scholar

[34] Rapitis A., Radiation and force convection flow through a porous medium. Int. Commum. Heat Mass Transfer; 25(2) (1998): 289 – 295.

DOI: 10.1016/s0735-1933(98)00016-5

Google Scholar

[35] Das K., Achara N. & Kundu P.K., Radiative flow of MHD Jeffery fluid past a stretching sheet with surface slip and melting heat transfer. Alexandria Eng. J.; 54(2015): 815-821.

DOI: 10.1016/j.aej.2015.06.008

Google Scholar

[36] Qasim M. Heat and mass transfer in a Jeffrey fluid over a stretching sheet with heat source/sink". Alexandria Engineering Journal; 52(2013): 571 – 575.

DOI: 10.1016/j.aej.2013.08.004

Google Scholar