[1]
Jarboui B., Siarry P., Teghem J., Metaheuristics for production scheduling, ISTE, (2013).
DOI: 10.1002/9781118731598
Google Scholar
[2]
Abedinnia H., Glock C.H., Schneider M.D., Machine scheduling in production: A content analysis, Applied Mathematical Modelling, 50 (2017) 279-299.
DOI: 10.1016/j.apm.2017.05.016
Google Scholar
[3]
Speranza M.G., Trends in transportation and logistics, European Journal of Operational Research, 264(3) (2018) 830-836.
DOI: 10.1016/j.ejor.2016.08.032
Google Scholar
[4]
Ankenman B.E., Bekki J.M., Fowler J., Mackulak G.T., Nelson B.L., Yang F., Simulation in production planning: an overview with emphasis on recent developments in cycle time estimation, In: Planning Production and Inventories in the Extended Enterprise, Springer, Boston, MA, 2011, pp.565-591.
DOI: 10.1007/978-1-4419-6485-4_19
Google Scholar
[5]
Ribas I., Leisten R. & Framiñan J.M., Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective, Computers & Operations Research, 37(8) (2010) 1439-1454.
DOI: 10.1016/j.cor.2009.11.001
Google Scholar
[6]
Abraham A. & Köppen M. (Eds.), Hybrid Information Systems, Vol. 14, Springer Science & Business Media, (2013).
Google Scholar
[7]
Riddell, Sarah., Scheduling algorithms for flow shop systems with frequent changeovers: application in proton exchange membrane fuel cell manufacturing, Diss. Rensselaer Polytechnic Institute, (2007).
Google Scholar
[8]
Hooker J.N., Van Hoeve W.J., Constraint programming and operations research, Constraints, 23(2) (2018) 172-195.
DOI: 10.1007/s10601-017-9280-3
Google Scholar
[9]
Harjunkoski I., Grossmann I.E., Decomposition techniques for multistage scheduling problems using mixed-integer and constraint programming methods, Computers & Chemical Engineering, 26(11) (2002) 1533-1552.
DOI: 10.1016/s0098-1354(02)00100-x
Google Scholar
[10]
Mabin V.J., & Balderstone S.J., The world of the theory of constraints: a review of the international literature, CRC Press, Wellington, (1999).
Google Scholar
[11]
Ge Y., Li L., Wang Y., Modeling of Bernoulli production line with the rework loop for transient and steady-state analysis, Journal of Manufacturing Systems, 44 (2017) 22-41.
DOI: 10.1016/j.jmsy.2017.04.002
Google Scholar
[12]
Colombo A.W., Karnouskos S. & Mendes J.M., Factory of the future: A service-oriented system of modular, dynamic reconfigurable and collaborative systems, In: Artificial intelligence techniques for networked manufacturing enterprises management, Springer, London, 2010, pp.459-481.
DOI: 10.1007/978-1-84996-119-6_15
Google Scholar
[13]
Yin Y., Stecke K.E., Li D., The evolution of production systems from Industry 2.0 through Industry 4.0, International Journal of Production Research, 56(1-2), (2018) 848-861.
DOI: 10.1080/00207543.2017.1403664
Google Scholar
[14]
Sipper D., Bulfin R., Planeación y control de la producción, Editorial Mc Graw Hill, (1999).
Google Scholar
[15]
Rolf B., Reggelin T., Nahhas A., Lang S., Müller M., Assigning dispatching rules using a genetic algorithm to solve a hybrid flow shop scheduling problem, Procedia Manufacturing, 42, (2020) 442-449.
DOI: 10.1016/j.promfg.2020.02.051
Google Scholar
[16]
Mancilla C., Storer R., A sample average approximation approach to stochastic appointment sequencing and scheduling, IIE Transactions, 44(8), (2012). 655-670.
DOI: 10.1080/0740817x.2011.635174
Google Scholar
[17]
Mahadevan B., Operations management: Theory and practice, Pearson Education India, (2015).
Google Scholar
[18]
Trojanowska J., Varela M.L.R., Machado J., The tool supporting decision making process in area of job-shop scheduling, In: World Conference on Information Systems and Technologies, Springer, Cham, 2017, pp.490-498.
DOI: 10.1007/978-3-319-56541-5_50
Google Scholar
[19]
Pinedo M., Planning and scheduling in manufacturing and services, Springer, New York, (2005).
Google Scholar
[20]
Ruiz-Torres A.J., Paletta G., Mahmoodi F., Ablanedo-Rosas J.H., Scheduling assemble-to-order systems with multiple cells to minimize costs and tardy deliveries, Computers & Industrial Engineering, 115 (2018) 290-303.
DOI: 10.1016/j.cie.2017.11.012
Google Scholar
[21]
Conradie D.G., Morison L.E. & Joubert J.W., Scheduling at coal handling facilities using simulated annealing, Mathematical Methods of Operations Research, 68(2) (2008) 277-293.
DOI: 10.1007/s00186-008-0221-1
Google Scholar
[22]
Baykasoğlu A., Hamzadayi A., Köse S.Y., Testing the performance of teaching–learning based optimization (TLBO) algorithm on combinatorial problems: Flow shop and job shop scheduling cases, Information Sciences, 276 (2014) 204-218.
DOI: 10.1016/j.ins.2014.02.056
Google Scholar
[23]
Özpeynirci S., Gökgür B., Hnich B., Parallel machine scheduling with tool loading, Applied Mathematical Modelling, 40(9-10), (2016) 5660-5671.
DOI: 10.1016/j.apm.2016.01.006
Google Scholar
[24]
Elmi A. & Topaloglu S., A scheduling problem in blocking hybrid flow shop robotic cells with multiple robots, Computers & operations research, 40(10) (2013) 2543-2555.
DOI: 10.1016/j.cor.2013.01.024
Google Scholar
[25]
Akhshabi M., Haddadnia J., Akhshabi M., Solving flow shop scheduling problem using a parallel genetic algorithm, Procedia Technology, 1 (2012) 351-355.
DOI: 10.1016/j.protcy.2012.02.073
Google Scholar
[26]
Gupta D. & Singh H., A Heuristic Approach to Flow Shop Scheduling Problem in Which Processing Times Are Associated with Their Respective Probabilities with No-Idle Constraint, ISRN Operations Research, (2013) (2013).
DOI: 10.1155/2013/948541
Google Scholar
[27]
Floudas C.A., & Pardalos P.M. (Eds), Encyclopedia of optimization, Springer Science & Business Media, (2008).
Google Scholar
[28]
Behnamian J., Ghomi S. F., Hybrid flow shop scheduling with machine and resource-dependent processing times, Applied Mathematical Modelling, 35(3) (2011) 1107-1123.
DOI: 10.1016/j.apm.2010.07.057
Google Scholar
[29]
Ruiz R. & Vázquez-Rodríguez J. A., The hybrid flow shop scheduling problem, European journal of operational research, 205(1) (2010) 1-18.
DOI: 10.1016/j.ejor.2009.09.024
Google Scholar
[30]
Wang H., Flexible flow shop scheduling: optimum, heuristics and artificial intelligence solutions, Expert Systems, 22(2) (2005) 78-85.
DOI: 10.1111/j.1468-0394.2005.00297.x
Google Scholar
[31]
Chen J.S., Pan J.C.H., Lin C.M., A hybrid genetic algorithm for the re-entrant flow-shop scheduling problem, Expert systems with applications, 34(1) (2008) 570-577.
DOI: 10.1016/j.eswa.2006.09.021
Google Scholar
[32]
Wang L., Pan Q.K., Suganthan P.N., Wang W.H., Wang Y.M., A novel hybrid discrete differential evolution algorithm for blocking flow shop scheduling problems, Computers & Operations Research, 37(3) (2010) 509-520.
DOI: 10.1016/j.cor.2008.12.004
Google Scholar
[33]
Garavito-Hernández E.A., Peña-Tibaduiza E., Perez-Figueredo L.E., Moratto-Chimenty E., A meta-heuristic based on the Imperialist Competitive Algorithm (ICA) for solving Hybrid Flow Shop (HFS) scheduling problem with unrelated parallel machines, Journal of Industrial and Production Engineering, 36(6), (2019). 362-370.
DOI: 10.1080/21681015.2019.1647299
Google Scholar
[34]
Ravianandan M., Omkumar M., Hybrid Flow Shop Scheduling using Improved Hybrid ACO Cuckoo Algorithm to Minimize Makespan, International journal of computer Applications, 115(18) (2015).
DOI: 10.5120/20251-2619
Google Scholar
[35]
Naderi B., Zandieh M., Ghomi S.F., A study on integrating sequence dependent setup time flexible flow lines and preventive maintenance scheduling, Journal of intelligent manufacturing, 20(6) (2009) 683.
DOI: 10.1007/s10845-008-0157-6
Google Scholar
[36]
Liang Y., Hui C.W., Simultaneous subtour elimination model for single-stage multiproduct parallel batch scheduling with sequence dependent changeovers, Computers & Chemical Engineering, 87 (2016). 63-67.
DOI: 10.1016/j.compchemeng.2015.12.024
Google Scholar