Biofuels, Hybrid and Mitigations of Greenhouse Gases Emissions: Scenario Perspective for Algerian Transport Sector by 2050

Article Preview

Abstract:

The expanding and highly greedy Algerian transport sector is totally depending on petro-products, due to the rising numbers of automobile fleets and the excessive dependence on road transportation. Irrecoverable Greenhouse gases GHGs emitted by this sector are constantly increasing. As a result, consumption of diesel and gasoline reached record levels. Consequently, there is a strong need of cleaner, eco-friendly and economically viable alternative fuels. Biofuels, electric, compressed natural gas CNG, liquefied petroleum gas LGP vehicles, are expected to play a crucial role in meeting energy and environmental policies targets. In this paper, the Algerian transport sector perspectives and Greenhouse gases mitigations, in different shaped scenarios based on semi-empirical models, are analyzed and discussed. For adequate policy shaped in a scenario, in 2050, annual Algerian consumption could decrease up to 35%, 43% of CO2 emissions and 73% of NOx emissions could be mitigated compared to no-intervention scenario. These promising findings indicate the huge potential of resource diversification on the transportation sector. Therefore, implementing such policies is fundamental for a durable Algerian’s transportation sector transition policy.

You might also be interested in these eBooks

Info:

Pages:

162-175

Citation:

Online since:

June 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] BP Statistical Review of World Energy 2019, 68th edition , BP p.l.c. 20192019.

Google Scholar

[2] World Energy Outlook 2017,, international energy agency IEA2017.

Google Scholar

[3] S. Okyere, J. Q. Yang, K. S. Aning, and B. Zhan, Review of Sustainable Multimodal Freight Transportation System in African Developing Countries: Evidence from Ghana,, International Journal of Engineering Research in Africa, vol. 41, pp.155-174, (2019).

DOI: 10.4028/www.scientific.net/jera.41.155

Google Scholar

[4] B. Recioui, N. Settou, A. Khalfi, A. Gouareh, S. Rahmouni, and R. Ghedamsi, Valorization of carbon dioxide by conversion into fuel using renewable energy in Algeria,, Transportation Research Part D: Transport and Environment, vol. 43, pp.145-157, 2016/03/01/ (2016).

DOI: 10.1016/j.trd.2015.11.006

Google Scholar

[5] S. Rahmouni, B. Negrou, N. Settou, J. Dominguez, and A. Gouareh, Prospects of hydrogen production potential from renewable resources in Algeria,, International Journal of Hydrogen Energy, vol. 42, pp.1383-1395, 2017/01/12/ (2017).

DOI: 10.1016/j.ijhydene.2016.07.214

Google Scholar

[6] CropEnergies. (2017). Bioethanol as a growth market Available: http://www.cropenergies.com/en/Bioethanol/Markt/Dynamisches_Wachstum/.

Google Scholar

[7] I. E. Agency, Technology roadmap: biofuels for transport,, (2011).

Google Scholar

[8] E.I.A. US-EIA. (2012). Biofuels Issues and Trends. Available: www.eia.gov/beta/international.

Google Scholar

[9] J. C. Escobar, E. S. Lora, O. J. Venturini, E. E. Yáñez, E. F. Castillo, and O. Almazan, Biofuels: Environment, technology and food security,, Renewable and Sustainable Energy Reviews, vol. 13, pp.1275-1287, (2009).

DOI: 10.1016/j.rser.2008.08.014

Google Scholar

[10] K. Bencheikh, A. E. Atabani, S. Shobana, M. N. Mohammed, G. Uğuz, O. Arpa, G. Kumar, A. Ayanoğlu, and A. Bokhari, Fuels properties, characterizations and engine and emission performance analyses of ternary waste cooking oil biodiesel–diesel–propanol blends,, Sustainable Energy Technologies and Assessments, vol. 35, pp.321-334, 2019/10/01/ (2019).

DOI: 10.1016/j.seta.2019.08.007

Google Scholar

[11] I. E. Agency. (2015). Medium-Term Oil Market Report. Available: http://www.iea.org.

Google Scholar

[12] S.-Z. Li and C. Chan-Halbrendt, Ethanol production in (the) People's Republic of China: Potential and technologies,, Applied Energy, vol. 86, Supplement 1, pp. S162-S169, (2009).

DOI: 10.1016/j.apenergy.2009.04.047

Google Scholar

[13] C. Bomb, K. McCormick, E. Deurwaarder, and T. Kåberger, Biofuels for transport in Europe: Lessons from Germany and the UK,, Energy Policy, vol. 35, pp.2256-2267, (2007).

DOI: 10.1016/j.enpol.2006.07.008

Google Scholar

[14] M. Melikoglu, Demand forecast for road transportation fuels including gasoline, diesel, LPG, bioethanol and biodiesel for Turkey between 2013 and 2023,, Renewable Energy, vol. 64, pp.164-171, (2014).

DOI: 10.1016/j.renene.2013.11.009

Google Scholar

[15] A. K. Azad, M. G. Rasul, M. M. K. Khan, S. C. Sharma, and M. A. Hazrat, Prospect of biofuels as an alternative transport fuel in Australia,, Renewable and Sustainable Energy Reviews, vol. 43, pp.331-351, (2015).

DOI: 10.1016/j.rser.2014.11.047

Google Scholar

[16] W. C. Nadaletti, P. A. Cremonez, S. N. M. de Souza, R. A. Bariccatti, P. Belli Filho, and D. Secco, Potential use of landfill biogas in urban bus fleet in the Brazilian states: A review,, Renewable and Sustainable Energy Reviews, vol. 41, pp.277-283, 2015/01/01/ (2015).

DOI: 10.1016/j.rser.2014.08.052

Google Scholar

[17] W. C. Nadaleti, G. Przybyla, P. Belli Filho, S. N. M. de Souza, M. Quadro, and R. Andreazza, Methane–hydrogen fuel blends for SI engines in Brazilian public transport: Potential supply and environmental issues,, International Journal of Hydrogen Energy, vol. 42, pp.12615-12628, 2017/04/27/ (2017).

DOI: 10.1016/j.ijhydene.2017.03.124

Google Scholar

[18] A.-H. Kakaee, A. Paykani, and M. Ghajar, The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines,, Renewable and Sustainable Energy Reviews, vol. 38, pp.64-78, 2014/10/01/ (2014).

DOI: 10.1016/j.rser.2014.05.080

Google Scholar

[19] M. I. Khan, T. Yasmin, and A. Shakoor, Technical overview of compressed natural gas (CNG) as a transportation fuel,, Renewable and Sustainable Energy Reviews, vol. 51, pp.785-797, 2015/11/01/ (2015).

DOI: 10.1016/j.rser.2015.06.053

Google Scholar

[20] (2019, october 25,2019). Worldwide NGV Statistics. Available: http://www.ngvjournal.com/ worldwide-ngv-statistics/.

Google Scholar

[21] M. U. Aslam, H. H. Masjuki, M. A. Kalam, H. Abdesselam, T. M. I. Mahlia, and M. A. Amalina, An experimental investigation of CNG as an alternative fuel for a retrofitted gasoline vehicle,, Fuel, vol. 85, pp.717-724, 2006/03/01/ (2006).

DOI: 10.1016/j.fuel.2005.09.004

Google Scholar

[22] A.-H. Kakaee and A. Paykani, Research and development of natural-gas fueled engines in Iran,, Renewable and Sustainable Energy Reviews, vol. 26, pp.805-821, 2013/10/01/ (2013).

DOI: 10.1016/j.rser.2013.05.048

Google Scholar

[23] N. N. Mustafi and A. K. Agarwal, Combustion and Emission Characteristics, and Emission Control of CNG Fueled Vehicles,, in Alternative Fuels and Their Utilization Strategies in Internal Combustion Engines, A. P. Singh, Y. C. Sharma, N. N. Mustafi, and A. K. Agarwal, Eds., ed Singapore: Springer Singapore, 2020, pp.201-228.

DOI: 10.1007/978-981-15-0418-1_12

Google Scholar

[24] I.O.o.M.V. Manufacturers. (2019, December, 2019). LGP. Available: http://www.oica.net/ category/auto-and-fuels/alternative-fuels/lpg/.

Google Scholar

[25] T. W. Adam, C. Astorga, M. Clairotte, M. Duane, M. Elsasser, A. Krasenbrink, B. R. Larsen, U. Manfredi, G. Martini, L. Montero, M. Sklorz, R. Zimmermann, and A. Perujo, Chemical analysis and ozone formation potential of exhaust from dual-fuel (liquefied petroleum gas/gasoline) light duty vehicles,, Atmospheric Environment, vol. 45, pp.2842-2848, 2011/06/01/ (2011).

DOI: 10.1016/j.atmosenv.2011.03.002

Google Scholar

[26] T. Kivevele, T. Raja, V. Pirouzfar, B. Waluyo, and M. Setiyo, LPG-Fueled Vehicles: An Overview of Technology and Market Trend,, Automotive Experiences, Apr. 2020, vol. 3, pp.6-19;.

DOI: 10.31603/ae.v3i1.3334

Google Scholar

[27] K. Kim, J. Kim, S. Oh, C. Kim, and Y. Lee, Lower particulate matter emissions with a stoichiometric LPG direct injection engine,, Fuel, vol. 187, pp.197-210, 2017/01/01/ (2017).

DOI: 10.1016/j.fuel.2016.09.058

Google Scholar

[28] W. Jang, A. Ko, S. Baek, D. Jin, K. Choi, C.-L. Myung, and S. Park, Study of regulated emissions and nanoparticle characteristics of light-duty direct-injection vehicles fuelled with gasoline and liquefied petroleum gas in the New European Driving Cycle and the Federal Test Procedure 75 driving cycle,, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 229, pp.25-37, 2015/01/01 (2014).

DOI: 10.1177/0954407013517219

Google Scholar

[29] A. Khaligh and M. D. Antonio, Global Trends in High-Power On-Board Chargers for Electric Vehicles,, IEEE Transactions on Vehicular Technology, vol. 68, pp.3306-3324, (2019).

DOI: 10.1109/tvt.2019.2897050

Google Scholar

[30] o.o.e.a.r. energy. (2019, December, 2019). Electric Vehicle Basics. Available: https://www.energy.gov/eere/office-energy-efficiency-renewable-energy.

Google Scholar

[31] E. E. Institute. (April2019, December). E L EC T R I C V E H I C L E SA L E S: FAC T S & F I GUR E S (Edison Electric Institute ed.). Available: www.eei.org.

Google Scholar

[32] O. N. d. S. (ONS). Parc national d'automobile. Available: www.ons.dz.

Google Scholar

[33] M. e. A. Boukli Hacene, D. Lucache, H. Rozale, and A. Chahed, Renewable Energy in Algeria: Desire and Possibilities,, Journal of Asian and African Studies, p.0021909619900202, (2020).

DOI: 10.1177/0021909619900202

Google Scholar

[34] OPEC, Annual Statistical Bulletin 2015 ,Organization of the Petroleum Exporting Countries.

Google Scholar

[35] MEM. Mines and Energy ministry. Available: http://www.energy.gov.dz.

Google Scholar

[36] MATTA. (2002). Plan National d'action pour l'Environnement et le Développement Durable (PNAE). Available: http://www.matta.gov.dz.

Google Scholar

[37] N. S. o. E. a. G. SONELGAZ Group. (2011). Renewable energy and energy efficiency program. Available: http://www.sonelgaz.dz.

Google Scholar

[38] CDER. Renewable Energy Development Center. Algeria. Available: www.cder.dz.

Google Scholar

[39] MATTA. Schéma National d'Aménagement du territoire(SNAT) 2010 Available: http://www.matta.gov.dz.

Google Scholar

[40] M. o. P. W. a. Transport. (2017). Available: http://www.mtp.gov.dz/.

Google Scholar

[41] W. Bank. (2014). World Bank: Algeria indicators. Available: www.databank.worldbank.org.

Google Scholar

[42] O. N. d. S. (ONS). Available: www.ons.dz.

Google Scholar

[43] MEM. Bilan Energetique National 2015. Available: http://www.energy.gov.dz.

Google Scholar

[44] W. Bank, International Experience with CNG Vehicles,, (2001).

Google Scholar

[45] B. Settou, N. Settou, A. Gouareh, B. Negrou, C. Mokhtara, and D. Messaoudi, GIS-Based Method for Future Prospect of Energy Supply in Algerian Road Transport Sector Using Solar Roads Technology,, Energy Procedia, vol. 162, pp.221-230, 2019/04/01/ (2019).

DOI: 10.1016/j.egypro.2019.04.024

Google Scholar

[46] A. Demirbas, Importance of biodiesel as transportation fuel,, Energy Policy, vol. 35, pp.4661-4670, 2007/09/01/ (2007).

DOI: 10.1016/j.enpol.2007.04.003

Google Scholar

[47] P. A. Cremonez, M. Feroldi, A. Feiden, J. Gustavo Teleken, D. José Gris, J. Dieter, E. de Rossi, and J. Antonelli, Current scenario and prospects of use of liquid biofuels in South America,, Renewable and Sustainable Energy Reviews, vol. 43, pp.352-362, (2015).

DOI: 10.1016/j.rser.2014.11.064

Google Scholar

[48] P. André Cremonez, M. Feroldi, W. Cézar Nadaleti, E. de Rossi, A. Feiden, M. P. de Camargo, F. E. Cremonez, and F. F. Klajn, Biodiesel production in Brazil: Current scenario and perspectives,, Renewable and Sustainable Energy Reviews, vol. 42, pp.415-428, (2015).

DOI: 10.1016/j.rser.2014.10.004

Google Scholar

[49] S. Rahmouni, N. Settou, B. Negrou, and A. Gouareh, GIS-based method for future prospect of hydrogen demand in the Algerian road transport sector,, International Journal of Hydrogen Energy, vol. 41, pp.2128-2143, 2016/01/30/ (2016).

DOI: 10.1016/j.ijhydene.2015.11.156

Google Scholar

[50] quot, A. Katzman, quot, quot, M. McNeil, quot, quot, S. Pantano, and quot, Benefits of creating a cross-country data framework for energy efficiency,, United States.

DOI: 10.2172/1163609

Google Scholar

[51] A. d. l. E. e. d. l. M. d. l'Énergie and é. Changement climatique - transition écologique. (2019, october). ADEM Agence de l'Environnement et de la Maîtrise de l'Energie Available: https://www.ademe.fr/.

Google Scholar

[52] X. Ou, X. Zhang, and S. Chang, Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions,, Energy Policy, vol. 38, pp.3943-3956, 2010/08/01/ (2010).

DOI: 10.1016/j.enpol.2010.03.018

Google Scholar

[53] L.-Y. He, L.-Q. Hou, H. Lin, and S.-F. Du, Biofuels or hybrid vehicles? A scenario perspective in China,, Energy Sources, Part B: Economics, Planning, and Policy, vol. 11, pp.443-449, 2016/05/03 (2016).

DOI: 10.1080/15567249.2012.654596

Google Scholar

[54] A. A. Banawan, M. M. El Gohary, and I. S. Sadek, Environmental and economical benefits of changing from marine diesel oil to natural-gas fuel for short-voyage high-power passenger ships,, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, vol. 224, pp.103-113, 2010/06/01 (2009).

DOI: 10.1243/14750902jeme181

Google Scholar

[55] C.-L. Myung, K. Choi, J. Kim, Y. Lim, J. Lee, and S. Park, Comparative study of regulated and unregulated toxic emissions characteristics from a spark ignition direct injection light-duty vehicle fueled with gasoline and liquid phase LPG (liquefied petroleum gas),, Energy, vol. 44, pp.189-196, 2012/08/01/ (2012).

DOI: 10.1016/j.energy.2012.06.039

Google Scholar

[56] A. Shirneshan, HC, CO, CO2 and NOx Emission Evaluation of a Diesel Engine Fueled with Waste Frying Oil Methyl Ester,, Procedia - Social and Behavioral Sciences, vol. 75, pp.292-297, 2013/04/03/ (2013).

DOI: 10.1016/j.sbspro.2013.04.033

Google Scholar

[57] M. Ghazikhani, M. Hatami, B. Safari, and D. D. Ganji, Experimental investigation of performance improving and emissions reducing in a two stroke SI engine by using ethanol additives,, Propulsion and Power Research, vol. 2, pp.276-283, 2013/12/01/ (2013).

DOI: 10.1016/j.jppr.2013.10.002

Google Scholar

[58] P. Chansauria and R. K. Mandloi, Effects of Ethanol Blends on Performance of Spark Ignition Engine-A Review,, Materials Today: Proceedings, vol. 5, pp.4066-4077, 2018/01/01/ (2018).

DOI: 10.1016/j.matpr.2017.11.668

Google Scholar

[59] A. Azadeh, R. Arab, and S. Behfard, An adaptive intelligent algorithm for forecasting long term gasoline demand estimation: The cases of USA, Canada, Japan, Kuwait and Iran,, Expert Systems with Applications, vol. 37, pp.7427-7437, (2010).

DOI: 10.1016/j.eswa.2010.03.009

Google Scholar