[1]
Serras, D.N., Skalomenos, K.A., Hatzigeorgiou, G.D., Beskos, D.E. Modeling of circular concrete-filled steel tubes subjected to cyclic lateral loading. Structures, 8 (2016), 75-93.
DOI: 10.1016/j.istruc.2016.08.008
Google Scholar
[2]
Chitawadagi, Manojkumar V., Mattur C. Narasimhan, and S. M. Kulkarni. Axial strength of circular concrete-filled steel tube columns—DOE approach., Journal of constructional steel research 66, no. 10 (2010): 1248-1260.
DOI: 10.1016/j.jcsr.2010.04.006
Google Scholar
[3]
Kibriya, T. Performance of concrete filled steel tubular columns., American Journal of Civil Engineering and Architecture 5, no. 2 (2017): 35-39.
Google Scholar
[4]
Dundu, M. Compressive strength of circular concrete filled steel tube columns., Thin-Walled Structures 56 (2012): 62-70.
DOI: 10.1016/j.tws.2012.03.008
Google Scholar
[5]
AL-Eliwi, B. J.M., Ekmekyapar, T., AL-Samaraie, M. I.A., Hanifi, D. M. Behavior of reinforced lightweight aggregate concrete-filled circular steel tube columns under axial loading. Structures, 16 (2018), 101-111.
DOI: 10.1016/j.istruc.2018.09.001
Google Scholar
[6]
Hassanein, M. F., M. Elchalakani, A. Karrech, V. I. Patel, and Bo Yang. Behaviour of concrete-filled double-skin short columns under compression through finite element modelling: SHS outer and SHS inner tubes., In Structures, vol. 14, pp.358-375. Elsevier, (2018).
DOI: 10.1016/j.istruc.2018.04.006
Google Scholar
[7]
Elchalakani, Mohamed, Mostafa Fahmi Hassanein, Ali Karrech, Sabrina Fawzia, Bo Yang, and V. I. Patel. Experimental tests and design of rubberised concrete-filled double skin circular tubular short columns., In Structures, vol. 15, pp.196-210. Elsevier, (2018).
DOI: 10.1016/j.istruc.2018.07.004
Google Scholar
[8]
Romero, Manuel L., C. Ibañez, Ana Espinós, José M. Portolés, and Antonio Hospitaler. Influence of ultra-high strength concrete on circular concrete-filled dual steel columns., In Structures, vol. 9, pp.13-20. Elsevier, (2017).
DOI: 10.1016/j.istruc.2016.07.001
Google Scholar
[9]
Yang, Jie, Therese Sheehan, Xianghe Dai, and Dennis Lam. Structural behaviour of beam to concrete-filled elliptical steel tubular column connections., In Structures, vol. 9, pp.41-52. Elsevier, (2017).
DOI: 10.1016/j.istruc.2016.09.005
Google Scholar
[10]
Ge, Hanbin, and Tsutomu Usami. Strength of concrete-filled thin-walled steel box columns: experiment., Journal of structural engineering 118, no. 11 (1992): 3036-3054.
DOI: 10.1061/(asce)0733-9445(1992)118:11(3036)
Google Scholar
[11]
Bridge, Russell Q., and Martin D O'Shea. Behaviour of thin-walled steel box sections with or without internal restraint., Journal of Constructional Steel Research 47, no. 1-2 (1998): 73-91.
DOI: 10.1016/s0143-974x(98)80103-x
Google Scholar
[12]
Schneider, Stephen P. Axially loaded concrete-filled steel tubes., Journal of structural Engineering 124, no. 10 (1998): 1125-1138.
DOI: 10.1061/(asce)0733-9445(1998)124:10(1125)
Google Scholar
[13]
Uy, Brain. Strength of short concrete filled high strength steel box columns., Journal of Constructional Steel Research 57, no. 2 (2001): 113-134.
DOI: 10.1016/s0143-974x(00)00014-6
Google Scholar
[14]
Han, L-H. Tests on stub columns of concrete-filled RHS sections., Journal of Constructional Steel Research 58, no. 3 (2002): 353-372.
DOI: 10.1016/s0143-974x(01)00059-1
Google Scholar
[15]
Giakoumelis, Georgios, and Dennis Lam. Axial capacity of circular concrete-filled tube columns., Journal of Constructional Steel Research 60, no. 7 (2004): 1049-1068.
DOI: 10.1016/j.jcsr.2003.10.001
Google Scholar
[16]
Han, Lin-Hai, Guo-Huang Yao, and Xiao-Ling Zhao. Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC)., Journal of Constructional Steel Research 61, no. 9 (2005): 1241-1269.
DOI: 10.1016/j.jcsr.2005.01.004
Google Scholar
[17]
Ellobody, Ehab, Ben Young, and Dennis Lam. Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns., Journal of Constructional Steel Research 62, no. 7 (2006): 706-715.
DOI: 10.1016/j.jcsr.2005.11.002
Google Scholar
[18]
Zhao, Xiao Ling, and Jeffrey A. Packer. Tests and design of concrete-filled elliptical hollow section stub columns., Thin-Walled Structures 47, no. 6-7 (2009): 617-628.
DOI: 10.1016/j.tws.2008.11.004
Google Scholar
[19]
Han, Lin-Hai, Wei Li, and Reidar Bjorhovde. Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members., Journal of Constructional Steel Research 100 (2014): 211-228.
DOI: 10.1016/j.jcsr.2014.04.016
Google Scholar
[20]
Vidya, K. C., and George M. Varghese. Performance of Lean Duplex Stainless Steel Stub Columns with Stiffener., In Applied Mechanics and Materials, vol. 857, pp.171-176. Trans Tech Publications Ltd, (2017).
DOI: 10.4028/www.scientific.net/amm.857.171
Google Scholar
[21]
Petrus, Clotilda, Hanizah Abdul Hamid, Azmi Ibrahim, and Gerard Parke. Experimental behaviour of concrete filled thin walled steel tubes with tab stiffeners., Journal of Constructional Steel Research 66, no. 7 (2010): 915-922.
DOI: 10.1016/j.jcsr.2010.02.006
Google Scholar
[22]
de Oliveira, Walter Luiz Andrade, Silvana De Nardin, Ana Lúcia H. de Cresce El, and Mounir Khalil El Debs. Influence of concrete strength and length/diameter on the axial capacity of CFT columns., Journal of Constructional Steel Research 65, no. 12 (2009): 2103-2110.
DOI: 10.1016/j.jcsr.2009.07.004
Google Scholar
[23]
Kurian, S.S., Paulose, D., Mohan, S. Study on concrete filled steel tube, IOSR-JMCE. 12 (2016), 25-33.
Google Scholar
[24]
Tao, Zhong, Tian-Yi Song, Brian Uy, and Lin-Hai Han. Bond behavior in concrete-filled steel tubes., Journal of Constructional Steel Research 120 (2016): 81-93.
DOI: 10.1016/j.jcsr.2015.12.030
Google Scholar
[25]
Evirgen, Burak, Ahmet Tuncan, and Kivanc Taskin. Structural behavior of concrete filled steel tubular sections (CFT/CFSt) under axial compression., Thin-Walled Structures 80 (2014): 46-56.
DOI: 10.1016/j.tws.2014.02.022
Google Scholar
[26]
Code, Egyptian. Egyptian Code of Practice for Concrete Structures, HBRC., Arabic, Cairo, Egypt (2007).
Google Scholar
[27]
ACI-318. (2008). Building code requirements for reinforced concrete. Detroit, MI: ACI; (2008).
Google Scholar
[28]
Nabati, Amin, Tohid Ghanbari-Ghazijahani, and Ching-Tai Ng. CFRP-reinforced concrete-filled steel tubes with timber core under axial loading., Composite Structures 217 (2019): 37-49.
DOI: 10.1016/j.compstruct.2019.02.075
Google Scholar
[29]
ANSI/AISC 360-10. Specification for Structural Steel Buildings, American Institute of Steel Construction (AISC), Chicago, USA, (2010).
DOI: 10.1201/b11248-16
Google Scholar
[30]
Steel, Concrete and Composite Bridges, Part 5, (BS.5400-5). Code of Practice for Design of Composite Bridges: (2002).
DOI: 10.3403/30125588
Google Scholar
[31]
Eurocode 4, (2004). Design of Composite Steel and Concrete Structures. Part 1-1: General Rules and Rules for Building. Brussels: EN 1994-1-1:2004, European Committee for Standardization.
DOI: 10.1680/dgte4.31517
Google Scholar